33 research outputs found

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    ResumeNet: A Learning-based Framework for Automatic Resume Quality Assessment

    Full text link
    Recruitment of appropriate people for certain positions is critical for any companies or organizations. Manually screening to select appropriate candidates from large amounts of resumes can be exhausted and time-consuming. However, there is no public tool that can be directly used for automatic resume quality assessment (RQA). This motivates us to develop a method for automatic RQA. Since there is also no public dataset for model training and evaluation, we build a dataset for RQA by collecting around 10K resumes, which are provided by a private resume management company. By investigating the dataset, we identify some factors or features that could be useful to discriminate good resumes from bad ones, e.g., the consistency between different parts of a resume. Then a neural-network model is designed to predict the quality of each resume, where some text processing techniques are incorporated. To deal with the label deficiency issue in the dataset, we propose several variants of the model by either utilizing the pair/triplet-based loss, or introducing some semi-supervised learning technique to make use of the abundant unlabeled data. Both the presented baseline model and its variants are general and easy to implement. Various popular criteria including the receiver operating characteristic (ROC) curve, F-measure and ranking-based average precision (AP) are adopted for model evaluation. We compare the different variants with our baseline model. Since there is no public algorithm for RQA, we further compare our results with those obtained from a website that can score a resume. Experimental results in terms of different criteria demonstrate the effectiveness of the proposed method. We foresee that our approach would transform the way of future human resources management.Comment: ICD

    API design for machine learning software: experiences from the scikit-learn project

    Get PDF
    Scikit-learn is an increasingly popular machine learning li- brary. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library

    A Multikernel-Like Learning Algorithm Based on Data Probability Distribution

    Get PDF
    In the machine learning based on kernel tricks, people often put one variable of a kernel function on the given samples to produce the basic functions of a solution space of learning problem. If the collection of the given samples deviates from the data distribution, the solution space spanned by these basic functions will also deviate from the real solution space of learning problem. In this paper a multikernel-like learning algorithm based on data probability distribution (MKDPD) is proposed, in which the parameters of a kernel function are locally adjusted according to the data probability distribution, and thus produces different kernel functions. These different kernel functions will generate different Reproducing Kernel Hilbert Spaces (RKHS). The direct sum of the subspaces of these RKHS constitutes the solution space of learning problem. Furthermore, based on the proposed MKDPD algorithm, a new algorithm for labeling new coming data is proposed, in which the basic functions are retrained according to the new coming data, while the coefficients of the retrained basic functions remained unchanged to label the new coming data. The experimental results presented in this paper show the effectiveness of the proposed algorithms
    corecore