33,965 research outputs found

    Manifold Structured Prediction

    Get PDF
    Structured prediction provides a general framework to deal with supervised problems where the outputs have semantically rich structure. While classical approaches consider finite, albeit potentially huge, output spaces, in this paper we discuss how structured prediction can be extended to a continuous scenario. Specifically, we study a structured prediction approach to manifold valued regression. We characterize a class of problems for which the considered approach is statistically consistent and study how geometric optimization can be used to compute the corresponding estimator. Promising experimental results on both simulated and real data complete our stud

    Manifold structured prediction

    Get PDF
    Structured prediction provides a general framework to deal with supervised problems where the outputs have semantically rich structure. While classical approaches consider finite, albeit potentially huge, output spaces, in this paper we discuss how structured prediction can be extended to a continuous scenario. Specifically, we study a structured prediction approach to manifold-valued regression. We characterize a class of problems for which the considered approach is statistically consistent and study how geometric optimization can be used to compute the corresponding estimator. Promising experimental results on both simulated and real data complete our study

    SPEECH: Structured Prediction with Energy-Based Event-Centric Hyperspheres

    Full text link
    Event-centric structured prediction involves predicting structured outputs of events. In most NLP cases, event structures are complex with manifold dependency, and it is challenging to effectively represent these complicated structured events. To address these issues, we propose Structured Prediction with Energy-based Event-Centric Hyperspheres (SPEECH). SPEECH models complex dependency among event structured components with energy-based modeling, and represents event classes with simple but effective hyperspheres. Experiments on two unified-annotated event datasets indicate that SPEECH is predominant in event detection and event-relation extraction tasks.Comment: Accepted by ACL 2023 Main Conference. Code is released at \url{https://github.com/zjunlp/SPEECH

    Structured Machine Learning for Robotics

    Get PDF
    Machine Learning has become the essential tool for automating tasks that consist in predicting the output associated to a certain input. However many modern algorithms are mainly developed for the simple cases of classification and regression. Structured prediction is the field concerned with predicting outputs consisting of complex objects such as graphs, orientations or sequences. While these objects are often of practical interest, they do not have many of the mathematical properties that allow to design principled and computationally feasible algorithms with traditional techniques. In this thesis we investigate and develop algorithms for learning manifold-valued functions in the context of structured prediction. Differentiable manifolds are a mathematical abstraction used in many domains to describe sets with continuous constraints and non-Euclidean geometric properties. By taking a structured prediction approach we show how to define statistically consistent estimators for predicting elements of a manifold, in constrast to traditional structured predition algorithms that are restricted to output sets with finite cardinality. We introduce a wide range of applications that leverage manifolds structures. Above all, we study the case of the hyperbolic manifold, a space suited for representing hierarchical data. By representing supervised datasets within hyperbolic space we show how it is possible to invent new concepts in a previously known hierarchy and show promising results in hierarchical classification. We also study how modern structured approaches can help with practical robotics tasks, either improving performances in behavioural pipelines or showing more robust predictions for constrained tasks. Specifically, we show how structured prediction can be used to tackle inverse kinematics problems of redundant robots, accounting for the constraints of the robotic joints. We also consider the task of biological motion detection and show that by leveraging the sequence structure of video streams we significantly reduce the latency of the application. Our studies are complemented by empirical evaluations on both synthetic and real data

    Multi-GCN: Graph Convolutional Networks for Multi-View Networks, with Applications to Global Poverty

    Full text link
    With the rapid expansion of mobile phone networks in developing countries, large-scale graph machine learning has gained sudden relevance in the study of global poverty. Recent applications range from humanitarian response and poverty estimation to urban planning and epidemic containment. Yet the vast majority of computational tools and algorithms used in these applications do not account for the multi-view nature of social networks: people are related in myriad ways, but most graph learning models treat relations as binary. In this paper, we develop a graph-based convolutional network for learning on multi-view networks. We show that this method outperforms state-of-the-art semi-supervised learning algorithms on three different prediction tasks using mobile phone datasets from three different developing countries. We also show that, while designed specifically for use in poverty research, the algorithm also outperforms existing benchmarks on a broader set of learning tasks on multi-view networks, including node labelling in citation networks

    Feature selection guided by structural information

    Get PDF
    In generalized linear regression problems with an abundant number of features, lasso-type regularization which imposes an 1\ell^1-constraint on the regression coefficients has become a widely established technique. Deficiencies of the lasso in certain scenarios, notably strongly correlated design, were unmasked when Zou and Hastie [J. Roy. Statist. Soc. Ser. B 67 (2005) 301--320] introduced the elastic net. In this paper we propose to extend the elastic net by admitting general nonnegative quadratic constraints as a second form of regularization. The generalized ridge-type constraint will typically make use of the known association structure of features, for example, by using temporal- or spatial closeness. We study properties of the resulting "structured elastic net" regression estimation procedure, including basic asymptotics and the issue of model selection consistency. In this vein, we provide an analog to the so-called "irrepresentable condition" which holds for the lasso. Moreover, we outline algorithmic solutions for the structured elastic net within the generalized linear model family. The rationale and the performance of our approach is illustrated by means of simulated and real world data, with a focus on signal regression.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS302 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Consistent Multitask Learning with Nonlinear Output Relations

    Get PDF
    Key to multitask learning is exploiting relationships between different tasks to improve prediction performance. If the relations are linear, regularization approaches can be used successfully. However, in practice assuming the tasks to be linearly related might be restrictive, and allowing for nonlinear structures is a challenge. In this paper, we tackle this issue by casting the problem within the framework of structured prediction. Our main contribution is a novel algorithm for learning multiple tasks which are related by a system of nonlinear equations that their joint outputs need to satisfy. We show that the algorithm is consistent and can be efficiently implemented. Experimental results show the potential of the proposed method.Comment: 25 pages, 1 figure, 2 table
    corecore