151 research outputs found

    A Comparative Study on the Methods Used for the Detection of Breast Cancer

    Get PDF
    Among women in the world, the death caused by the Breast cancer has become the leading role. At an initial stage, the tumor in the breast is hard to detect. Manual attempt have proven to be time consuming and inefficient in many cases. Hence there is a need for efficient methods that diagnoses the cancerous cell without human involvement with high accuracy. Mammography is a special case of CT scan which adopts X-ray method with high resolution film. so that it can detect well the tumors in the breast. This paper describes the comparative study of the various data mining methods on the detection of the breast cancer by using image processing techniques

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models

    Healthcare data heterogeneity and its contribution to machine learning performance

    Full text link
    Tesis por compendio[EN] The data quality assessment has many dimensions, from those so obvious as the data completeness and consistency to other less evident such as the correctness or the ability to represent the target population. In general, it is possible to classify them as those produced by an external effect, and those that are inherent in the data itself. This work will be focused on those inherent to data, such as the temporal and the multisource variability applied to healthcare data repositories. Every process is usually improved over time, and that has a direct impact on the data distribution. Similarly, how a process is executed in different sources may vary due to many factors, such as the diverse interpretation of standard protocols by human beings or different previous experiences of experts. Artificial Intelligence has become one of the most widely extended technological paradigms in almost all the scientific and industrial fields. Advances not only in models but also in hardware have led to their use in almost all areas of science. Although the solved problems using this technology often have the drawback of not being interpretable, or at least not as much as other classical mathematical or statistical techniques. This motivated the emergence of the "explainable artificial intelligence" concept, that study methods to quantify and visualize the training process of models based on machine learning. On the other hand, real systems may often be represented by large networks (graphs), and one of the most relevant features in such networks is the community or clustering structure. Since sociology, biology, or clinical situations could usually be modeled using graphs, community detection algorithms are becoming more and more extended in a biomedical field. In the present doctoral thesis, contributions have been made in the three above mentioned areas. On the one hand, temporal and multisource variability assessment methods based on information geometry were used to detect variability in data distribution that may hinder data reuse and, hence, the conclusions which can be extracted from them. This methodology's usability was proved by a temporal variability analysis to detect data anomalies in the electronic health records of a hospital over 7 years. Besides, it showed that this methodology could have a positive impact if it applied previously to any study. To this end, firstly, we extracted the variables that highest influenced the intensity of headache in migraine patients using machine learning techniques. One of the principal characteristics of machine learning algorithms is its capability of fitting the training set. In those datasets with a small number of observations, the model can be biased by the training sample. The observed variability, after the application of the mentioned methodology and considering as sources the registries of migraine patients with different headache intensity, served as evidence for the truthfulness of the extracted features. Secondly, such an approach was applied to measure the variability among the gray-level histograms of digital mammographies. We demonstrated that the acquisition device produced the observed variability, and after defining an image preprocessing step, the performance of a deep learning model, which modeled a marker of breast cancer risk estimation, increased. Given a dataset containing the answers to a survey formed by psychometric scales, or in other words, questionnaires to measure psychologic factors, such as depression, cope, etcetera, two deep learning architectures that used the data structure were defined. Firstly, we designed a deep learning architecture using the conceptual structure of such psychometric scales. This architecture was trained to model the happiness degree of the participants, improved the performance compared to classical statistical approaches. A second architecture, automatically designed using community detection in graphs, was not only a contribution[ES] El análisis de la calidad de los datos abarca muchas dimensiones, desde aquellas tan obvias como la completitud y la coherencia, hasta otras menos evidentes como la correctitud o la capacidad de representar a la población objetivo. En general, es posible clasificar estas dimensiones como las producidas por un efecto externo y las que son inherentes a los propios datos. Este trabajo se centrará en la evaluación de aquellas inherentes a los datos en repositorios de datos sanitarios, como son la variabilidad temporal y multi-fuente. Los procesos suelen evolucionar con el tiempo, y esto tiene un impacto directo en la distribución de los datos. Análogamente, la subjetividad humana puede influir en la forma en la que un mismo proceso, se ejecuta en diferentes fuentes de datos, influyendo en su cuantificación o recogida. La inteligencia artificial se ha convertido en uno de los paradigmas tecnológicos más extendidos en casi todos los campos científicos e industriales. Los avances, no sólo en los modelos sino también en el hardware, han llevado a su uso en casi todas las áreas de la ciencia. Es cierto que, los problemas resueltos mediante esta tecnología, suelen tener el inconveniente de no ser interpretables, o al menos, no tanto como otras técnicas de matemáticas o de estadística clásica. Esta falta de interpretabilidad, motivó la aparición del concepto de "inteligencia artificial explicable", que estudia métodos para cuantificar y visualizar el proceso de entrenamiento de modelos basados en aprendizaje automático. Por otra parte, los sistemas reales pueden representarse a menudo mediante grandes redes (grafos), y una de las características más relevantes de esas redes, es la estructura de comunidades. Dado que la sociología, la biología o las situaciones clínicas, usualmente pueden modelarse mediante grafos, los algoritmos de detección de comunidades se están extendiendo cada vez más en el ámbito biomédico. En la presente tesis doctoral, se han hecho contribuciones en los tres campos anteriormente mencionados. Por una parte, se han utilizado métodos de evaluación de variabilidad temporal y multi-fuente, basados en geometría de la información, para detectar la variabilidad en la distribución de los datos que pueda dificultar la reutilización de los mismos y, por tanto, las conclusiones que se puedan extraer. Esta metodología demostró ser útil tras ser aplicada a los registros electrónicos sanitarios de un hospital a lo largo de 7 años, donde se detectaron varias anomalías. Además, se demostró el impacto positivo que este análisis podría añadir a cualquier estudio. Para ello, en primer lugar, se utilizaron técnicas de aprendizaje automático para extraer las características más relevantes, a la hora de clasificar la intensidad del dolor de cabeza en pacientes con migraña. Una de las propiedades de los algoritmos de aprendizaje automático es su capacidad de adaptación a los datos de entrenamiento, en bases de datos en los que el número de observaciones es pequeño, el estimador puede estar sesgado por la muestra de entrenamiento. La variabilidad observada, tras la utilización de la metodología y considerando como fuentes, los registros de los pacientes con diferente intensidad del dolor, sirvió como evidencia de la veracidad de las características extraídas. En segundo lugar, se aplicó para medir la variabilidad entre los histogramas de los niveles de gris de mamografías digitales. Se demostró que esta variabilidad estaba producida por el dispositivo de adquisición, y tras la definición de un preproceso de imagen, se mejoró el rendimiento de un modelo de aprendizaje profundo, capaz de estimar un marcador de imagen del riesgo de desarrollar cáncer de mama. Dada una base de datos que recogía las respuestas de una encuesta formada por escalas psicométricas, o lo que es lo mismo cuestionarios que sirven para medir un factor psicológico, tales como depresión, resiliencia, etc., se definieron nuevas arquitecturas de aprendizaje profundo utilizando la estructura de los datos. En primer lugar, se dise˜no una arquitectura, utilizando la estructura conceptual de las citadas escalas psicom´etricas. Dicha arquitectura, que trataba de modelar el grado de felicidad de los participantes, tras ser entrenada, mejor o la precisión en comparación con otros modelos basados en estadística clásica. Una segunda aproximación, en la que la arquitectura se diseño de manera automática empleando detección de comunidades en grafos, no solo fue una contribución de por sí por la automatización del proceso, sino que, además, obtuvo resultados comparables a su predecesora.[CA] L'anàlisi de la qualitat de les dades comprén moltes dimensions, des d'aquelles tan òbvies com la completesa i la coherència, fins a altres menys evidents com la correctitud o la capacitat de representar a la població objectiu. En general, és possible classificar estes dimensions com les produïdes per un efecte extern i les que són inherents a les pròpies dades. Este treball se centrarà en l'avaluació d'aquelles inherents a les dades en reposadors de dades sanitaris, com són la variabilitat temporal i multi-font. Els processos solen evolucionar amb el temps i açò té un impacte directe en la distribució de les dades. Anàlogament, la subjectivitat humana pot influir en la forma en què un mateix procés, s'executa en diferents fonts de dades, influint en la seua quantificació o arreplega. La intel·ligència artificial s'ha convertit en un dels paradigmes tecnològics més estesos en quasi tots els camps científics i industrials. Els avanços, no sols en els models sinó també en el maquinari, han portat al seu ús en quasi totes les àrees de la ciència. És cert que els problemes resolts per mitjà d'esta tecnologia, solen tindre l'inconvenient de no ser interpretables, o almenys, no tant com altres tècniques de matemàtiques o d'estadística clàssica. Esta falta d'interpretabilitat, va motivar l'aparició del concepte de "inteligencia artificial explicable", que estudia mètodes per a quantificar i visualitzar el procés d'entrenament de models basats en aprenentatge automàtic. D'altra banda, els sistemes reals poden representar-se sovint per mitjà de grans xarxes (grafs) i una de les característiques més rellevants d'eixes xarxes, és l'estructura de comunitats. Atés que la sociologia, la biologia o les situacions clíniques, poden modelar-se usualment per mitjà de grafs, els algoritmes de detecció de comunitats s'estan estenent cada vegada més en l'àmbit biomèdic. En la present tesi doctoral, s'han fet contribucions en els tres camps anteriorment mencionats. D'una banda, s'han utilitzat mètodes d'avaluació de variabilitat temporal i multi-font, basats en geometria de la informació, per a detectar la variabilitat en la distribució de les dades que puga dificultar la reutilització dels mateixos i, per tant, les conclusions que es puguen extraure. Esta metodologia va demostrar ser útil després de ser aplicada als registres electrònics sanitaris d'un hospital al llarg de 7 anys, on es van detectar diverses anomalies. A més, es va demostrar l'impacte positiu que esta anàlisi podria afegir a qualsevol estudi. Per a això, en primer lloc, es van utilitzar tècniques d'aprenentatge automàtic per a extraure les característiques més rellevants, a l'hora de classificar la intensitat del mal de cap en pacients amb migranya. Una de les propietats dels algoritmes d'aprenentatge automàtic és la seua capacitat d'adaptació a les dades d'entrenament, en bases de dades en què el nombre d'observacions és xicotet, l'estimador pot estar esbiaixat per la mostra d'entrenament. La variabilitat observada després de la utilització de la metodologia, i considerant com a fonts els registres dels pacients amb diferent intensitat del dolor, va servir com a evidència de la veracitat de les característiques extretes. En segon lloc, es va aplicar per a mesurar la variabilitat entre els histogrames dels nivells de gris de mamografies digitals. Es va demostrar que esta variabilitat estava produïda pel dispositiu d'adquisició i després de la definició d'un preprocés d'imatge, es va millorar el rendiment d'un model d'aprenentatge profund, capaç d'estimar un marcador d'imatge del risc de desenrotllar càncer de mama. Donada una base de dades que arreplegava les respostes d'una enquesta formada per escales psicomètriques, o el que és el mateix qüestionaris que servixen per a mesurar un factor psicològic, com ara depressió, resiliència, etc., es van definir noves arquitectures d'aprenentatge profund utilitzant l’estructura de les dades. En primer lloc, es disseny`a una arquitectura, utilitzant l’estructura conceptual de les esmentades escales psicom`etriques. La dita arquitectura, que tractava de modelar el grau de felicitat dels participants, despr´es de ser entrenada, va millorar la precisió en comparació amb altres models basats en estad´ıstica cl`assica. Una segona aproximació, en la que l’arquitectura es va dissenyar de manera autoàtica emprant detecció de comunitats en grafs, no sols va ser una contribució de per si per l’automatització del procés, sinó que, a més, va obtindre resultats comparables a la seua predecessora.También me gustaría mencionar al Instituto Tecnológico de la Informáica, en especial al grupo de investigación Percepción, Reconocimiento, Aprendizaje e Inteligencia Artificial, no solo por darme la oportunidad de seguir creciendo en el mundo de la ciencia, sino también, por apoyarme en la consecución de mis objetivos personalesPérez Benito, FJ. (2020). Healthcare data heterogeneity and its contribution to machine learning performance [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/154414TESISCompendi

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care
    corecore