2,067 research outputs found

    Digital curation and the cloud

    Get PDF
    Digital curation involves a wide range of activities, many of which could benefit from cloud deployment to a greater or lesser extent. These range from infrequent, resource-intensive tasks which benefit from the ability to rapidly provision resources to day-to-day collaborative activities which can be facilitated by networked cloud services. Associated benefits are offset by risks such as loss of data or service level, legal and governance incompatibilities and transfer bottlenecks. There is considerable variability across both risks and benefits according to the service and deployment models being adopted and the context in which activities are performed. Some risks, such as legal liabilities, are mitigated by the use of alternative, e.g., private cloud models, but this is typically at the expense of benefits such as resource elasticity and economies of scale. Infrastructure as a Service model may provide a basis on which more specialised software services may be provided. There is considerable work to be done in helping institutions understand the cloud and its associated costs, risks and benefits, and how these compare to their current working methods, in order that the most beneficial uses of cloud technologies may be identified. Specific proposals, echoing recent work coordinated by EPSRC and JISC are the development of advisory, costing and brokering services to facilitate appropriate cloud deployments, the exploration of opportunities for certifying or accrediting cloud preservation providers, and the targeted publicity of outputs from pilot studies to the full range of stakeholders within the curation lifecycle, including data creators and owners, repositories, institutional IT support professionals and senior manager

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575

    A proposed NFC payment application

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Near Field Communication (NFC) technology is based on a short range radio communication channel which enables users to exchange data between devices. With NFC technology, mobile services establish a contactless transaction system to make the payment methods easier for people. Although NFC mobile services have great potential for growth, they have raised several issues which have concerned the researches and prevented the adoption of this technology within societies. Reorganizing and describing what is required for the success of this technology have motivated us to extend the current NFC ecosystem models to accelerate the development of this business area. In this paper, we introduce a new NFC payment application, which is based on our previous “NFC Cloud Wallet” model [1] to demonstrate a reliable structure of NFC ecosystem. We also describe the step by step execution of the proposed protocol in order to carefully analyse the payment application and our main focus will be on the Mobile Network Operator (MNO) as the main player within the ecosystem

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    ESPACE: Building a Collaborative Workspace using Microsoft 365

    Get PDF

    EXPLORATION OF COLLABORATIVE DESIGN SPACES: ENGINEERING INTERACTIONS AND WORKFLOWS IN PRODUCT DEVELOPMENT

    Get PDF
    Product Lifecycle Management (PLM) initiatives can improve an enterprise’s efficiency by increasing collaborative design opportunities within its business structure. PLM solutions provide digital mediums to collaborate on all aspects of a company’s workflow, including engineering, testing, manufacturing, marketing, business, and field support services. This paper examines the major PLM tools and software used to establish a collaborative engineering design space; computer-aided design (CAD), computer-aided engineering (CAE), computer-aided manufacturing (CAM), and product data management (PDM). The interactions between these PLM tools and a design team’s organizational structure are analyzed to determine some of the most effective PLM integration strategies to improve collaboration for all business functions. Engineering enterprises may split their work functions into technical and non-technical categories and match them with PLM solutions to create a collaborative design space that integrates all departments. A case study presents a university design team whose objective was collaborative creation of a digital twin for a scale tracked vehicle. The Siemens Teamcenter software tool was integrated within the team’s design procedures to improve the process. The results of integrating advanced PDM software into their workflow, including troubleshooting issues and problems, were explored in this paper. PDM and workflow interactions throughout the case study produced many unique outcomes that require additional PLM engineering solutions. Overall, advanced PDM software increased collaboration and efficiency of their design process
    corecore