2,923 research outputs found

    Network Awareness for Wireless Peer-to-Peer Collaborative Environments

    Get PDF
    Presentation to the 37th Hawaii International Conference on System Science. Hilton Waikoloa Village, Island of Hawaii, 5-8 January 2004.The implications of using mobile wireless communications are significant for emerging peer-to-peer (P2P) collaborative environments. From a networking perspective, the use of wireless technologies to support collaboration may impact bandwidth and spectrum utilization. This paper explores the effects of providing feedback to system users regarding wireless P2P network behavior on the performance of collaboration support applications. We refer to this operational feedback as "network awareness." The underlying premise is that providing feedback on the status of the network will enable users to self-organize their behavior to maintain quality of data sharing. Results achieved during an experiment conducted at the Naval Postgraduate School demonstrate significant effects of roaming on application sharing performance and integration with client-server applications. A solution for improving network aware P2P collaboration, identified in the experiment, is discussed

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    On-Site Information Systems Design for Emergency First Responders

    Get PDF
    This paper explores the design specification of on-site emergency response information systems. In particular how emerging technologies such as wireless sensor networks, RFID, and wireless communication technologies, might enable on-site dynamic information to be retrieved, shared, and presented to the first responders. The information needed for an emergency response is discussed and end-user requirements are identified through extensive interviews with fire fighters together with observation made of fire emergency response training simulations. These requirements are considered in relation to the identified responsibilities of the core members in the first responder hierarchy. On-site dynamic information collection is discussed in terms of wireless sensor networks and radio frequency identification technologies, and information sharing among the first responders is implemented based on a local wireless communication network. The on-site dynamic information required by emergency personnel is presented at three situation awareness levels in order to meet the various requirements of the first responders. Finally, a prototype information system for fire and rescue services is discussed to illustrate and evaluate the methods proposed in this paper. This work outlines the basic design principles and practice of on-site information systems for emergency first responders and shows that such an information system could greatly improve their performance as well as reducing the risks they face, once the emerging technologies are in place to implement them. Although our focus was on structural fire and fire fighters, the on-site emergency response system proposed here is applicable to other emergency response as well, due to the existence of common training methods and standard operating procedures

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions

    Get PDF
    In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. Currently, there are no airborne civilian communications systems designed to meet the demands of the public following a natural disaster. A system allowing even a limited amount of communications post-disaster is a great improvement on the current situation, where telecommunications are frequently not available. It is technically feasible to use an airborne, wireless, cellular system quickly deployable to disaster areas and configured to restore some of the functions of damaged terrestrial telecommunications networks. The system requirements were presented, leading to the next stage of the planned research, where a range of possible solutions were examined. The best solution was selected based on the earlier, predefined criteria. The system was modeled, and a test ii system built. The system was tested and redesigned when necessary, to meet the requirements. The research has shown how the combination of technology, especially the recent miniaturizations and move to open source software for cellular network components can allow sophisticated cellular networks to be implemented. The ACN system proposed could enable connectivity and reduce the communications problems that were experienced following Hurricane Sandy and Katrina. Experience with both natural and man-made disasters highlights the fact that communications are useful only to the extent that they are accessible and useable by the population

    A review of cyber threats and defence approaches in emergency management

    Get PDF
    Emergency planners, first responders and relief workers increasingly rely on computational and communication systems that support all aspects of emergency management, from mitigation and preparedness to response and recovery. Failure of these systems, whether accidental or because of malicious action, can have severe implications for emergency management. Accidental failures have been extensively documented in the past and significant effort has been put into the development and introduction of more resilient technologies. At the same time researchers have been raising concerns about the potential of cyber attacks to cause physical disasters or to maximise the impact of one by intentionally impeding the work of the emergency services. Here, we provide a review of current research on the cyber threats to communication, sensing, information management and vehicular technologies used in emergency management. We emphasise on open issues for research, which are the cyber threats that have the potential to affect emergency management severely and for which solutions have not yet been proposed in the literature

    Integration of Data Driven Technologies in Smart Grids for Resilient and Sustainable Smart Cities: A Comprehensive Review

    Full text link
    A modern-day society demands resilient, reliable, and smart urban infrastructure for effective and in telligent operations and deployment. However, unexpected, high-impact, and low-probability events such as earthquakes, tsunamis, tornadoes, and hurricanes make the design of such robust infrastructure more complex. As a result of such events, a power system infrastructure can be severely affected, leading to unprecedented events, such as blackouts. Nevertheless, the integration of smart grids into the existing framework of smart cities adds to their resilience. Therefore, designing a resilient and reliable power system network is an inevitable requirement of modern smart city infras tructure. With the deployment of the Internet of Things (IoT), smart cities infrastructures have taken a transformational turn towards introducing technologies that do not only provide ease and comfort to the citizens but are also feasible in terms of sustainability and dependability. This paper presents a holistic view of a resilient and sustainable smart city architecture that utilizes IoT, big data analytics, unmanned aerial vehicles, and smart grids through intelligent integration of renew able energy resources. In addition, the impact of disasters on the power system infrastructure is investigated and different types of optimization techniques that can be used to sustain the power flow in the network during disturbances are compared and analyzed. Furthermore, a comparative review analysis of different data-driven machine learning techniques for sustainable smart cities is performed along with the discussion on open research issues and challenges
    • …
    corecore