339 research outputs found

    Modelling customers credit card behaviour using bidirectional LSTM neural networks

    Get PDF
    With the rapid growth of consumer credit and the huge amount of financial data developing effective credit scoring models is very crucial. Researchers have developed complex credit scoring models using statistical and artificial intelligence (AI) techniques to help banks and financial institutions to support their financial decisions. Neural networks are considered as a mostly wide used technique in finance and business applications. Thus, the main aim of this paper is to help bank management in scoring credit card clients using machine learning by modelling and predicting the consumer behaviour with respect to two aspects: the probability of single and consecutive missed payments for credit card customers. The proposed model is based on the bidirectional Long-Short Term Memory (LSTM) model to give the probability of a missed payment during the next month for each customer. The model was trained on a real credit card dataset and the customer behavioural scores are analysed using classical measures such as accuracy, Area Under the Curve, Brier score, Kolmogorov–Smirnov test, and H-measure. Calibration analysis of the LSTM model scores showed that they can be considered as probabilities of missed payments. The LSTM model was compared to four traditional machine learning algorithms: support vector machine, random forest, multi-layer perceptron neural network, and logistic regression. Experimental results show that, compared with traditional methods, the consumer credit scoring method based on the LSTM neural network has significantly improved consumer credit scoring

    An insight into the experimental design for credit risk and corporate bankruptcy prediction systems

    Get PDF
    Over the last years, it has been observed an increasing interest of the finance and business communities in any application tool related to the prediction of credit and bankruptcy risk, probably due to the need of more robust decision-making systems capable of managing and analyzing complex data. As a result, plentiful techniques have been developed with the aim of producing accurate prediction models that are able to tackle these issues. However, the design of experiments to assess and compare these models has attracted little attention so far, even though it plays an important role in validating and supporting the theoretical evidence of performance. The experimental design should be done carefully for the results to hold significance; otherwise, it might be a potential source of misleading and contradictory conclusions about the benefits of using a particular prediction system. In this work, we review more than 140 papers published in refereed journals within the period 2000–2013, putting the emphasis on the bases of the experimental design in credit scoring and bankruptcy prediction applications. We provide some caveats and guidelines for the usage of databases, data splitting methods, performance evaluation metrics and hypothesis testing procedures in order to converge on a systematic, consistent validation standard.This work has partially been supported by the Mexican Science and Technology Council (CONACYT-Mexico) through a Postdoctoral Fellowship [223351], the Spanish Ministry of Economy under grant TIN2013-46522-P and the Generalitat Valenciana under grant PROMETEOII/2014/062

    Artificial Intelligence and Bank Soundness: Between the Devil and the Deep Blue Sea - Part 2

    Get PDF
    Banks have experienced chronic weaknesses as well as frequent crisis over the years. As bank failures are costly and affect global economies, banks are constantly under intense scrutiny by regulators. This makes banks the most highly regulated industry in the world today. As banks grow into the 21st century framework, banks are in need to embrace Artificial Intelligence (AI) to not only to provide personalized world class service to its large database of customers but most importantly to survive. The chapter provides a taxonomy of bank soundness in the face of AI through the lens of CAMELS where C (Capital), A(Asset), M(Management), E(Earnings), L(Liquidity), S(Sensitivity). The taxonomy partitions challenges from the main strand of CAMELS into distinct categories of AI into 1(C), 4(A), 17(M), 8 (E), 1(L), 2(S) categories that banks and regulatory teams need to consider in evaluating AI use in banks. Although AI offers numerous opportunities to enable banks to operate more efficiently and effectively, at the same time banks also need to give assurance that AI ‘do no harm’ to stakeholders. Posing many unresolved questions, it seems that banks are trapped between the devil and the deep blue sea for now

    On the applicability of credit scoring models in Egyptian banks

    Get PDF
    Credit scoring is regarded as a core competence of commercial banks during the last few decades. A number of credit scoring models have been developed to evaluate credit risk of new loan applicants and existing loan clients. The main purpose of the present paper is to evaluate credit risk in Egyptian banks using credit scoring models. Three statistical techniques are used: discriminant analysis, probit analysis and logistic regression. The credit scoring task is performed on one bank’s personal loans data-set. The results so far revealed that all proposed models gave a better average correct classification rate than the one currently used. Also both type I and type II errors had been calculated in order to evaluate the misclassification costs

    Profiling for profit : a report on target marketing and profiling practices in the credit industry

    Full text link
    This report examines how many businesses make significant investments to purchase and develop customer relationship management systems. Given such investments, information about these systems is not widely available, but some publicly available information gives indication of the extent, and purpose, of the use. Recognising that lenders use customer information and highly sophisticated systems to target their marketing strategies, is the first step towards ensuring that these practices are taken into account in the development of consumer policy and law reform. This research was funded by the consumer advisory panel of the Australian Securities and Investment Commission (ASIC)

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    Low-Default Portfolio/One-Class Classification: A Literature Review

    Get PDF
    Consider a bank which wishes to decide whether a credit applicant will obtain credit or not. The bank has to assess if the applicant will be able to redeem the credit. This is done by estimating the probability that the applicant will default prior to the maturity of the credit. To estimate this probability of default it is first necessary to identify criteria which separate the good from the bad creditors, such as loan amount and age or factors concerning the income of the applicant. The question then arises of how a bank identifies a sufficient number of selective criteria that possess the necessary discriminatory power. As a solution, many traditional binary classification methods have been proposed with varying degrees of success. However, a particular problem with credit scoring is that defaults are only observed for a small subsample of applicants. An imbalance exists between the ratio of non-defaulters to defaulters. This has an adverse effect on the aforementioned binary classification method. Recently one-class classification approaches have been proposed to address the imbalance problem. The purpose of this literature review is three fold: (I) present the reader with an overview of credit scoring; (ii) review existing binary classification approaches; and (iii) introduce and examine one-class classification approaches
    corecore