9,625 research outputs found

    NIGER-DELTA: ENVIRONMENT, OGONI CRISIS AND THE STATE

    Get PDF
    Among the well agreed-on benefits of a guideline computerisation, with respect to the traditional text format, there are the disambiguation, the possibility of looking at the guideline at different levels of detail and the possibility of generating patient-tailored suggestions. Nevertheless, the connection of guidelines with patient records is still a challenging problem, as well as their effective integration into the clinical workflow. In this paper, we describe the evolution of our environment for representing and running guidelines. The main new features concern the choice of a commercial product as the middle layer with the electronic patient record, the consequent possibility of gathering information from different legacy systems, and the extension of this "virtual medical record" to the storage of process data. This last feature allows managing exceptions, i.e. decisions that do not comply with guidelines

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    An Approach for Supporting Ad-hoc Modifications in Distributed Workflow Management Systems

    Get PDF
    Supporting enterprise-wide or even cross-organizational business processes is a characteristic challenge for any workflow management system (WfMS). Scalability at the presence of high loads as well as the capability to dynamically modify running workflow (WF) instances (e.g., to cope with exceptional situations) are essential requirements in this context. Should the latter one, in particular, not be met, the WfMS will not have the necessary flexibility to cover the wide range of process-oriented applications deployed in many organizations. Scalability and flexibility have, for the most part, been treated separately in the relevant literature thus far. Even though they are basic needs for a WfMS, the requirements related with them are totally different. To achieve satisfactory scalability, on the one hand, the system needs to be designed such that a workflow instance can be controlled by several WF servers that are as independent from each other as possible. Yet dynamic WF modifications, on the other hand, necessitate a (logical) central control instance which knows the current and global state of a WF instance. For the first time, this paper presents methods which allow ad-hoc modifications (e.g., to insert, delete, or shift steps) to be performed in a distributed WfMS; i.e., in a WfMS with partitioned WF execution graphs and distributed WF control. It is especially noteworthy that the system succeeds in realizing the full functionality as given in the central case while, at the same time, achieving extremely favorable behavior with respect to communication costs

    Workflow Management for Multiple Sclerosis Patients: IT and Organization

    Get PDF
    Patients with Multiple Sclerosis (MS) visit various healthcare providers during the course of their disease. It was suggested that IT might help to\ud orchestrate their care provision. We have applied the USE IT-tool to get insight in the relevant problems, solutions and constraints of the MS-care and the MS care providers both in the organizational and the information technological area. There is hardly a chain of healthcare, but rather, a network in which informal communication plays an important role. This informal network worked reasonably effective, but inefficient and slow. The patient himself plays a keyrole in information exchange between care-providers. Many providers were unaware of the services that other healthcare providers could give in general or did provide to a specific patient. MS patients-count is only small for most care providers. None of the interviewed patients mentioned a lack of contacts between careproviders as a problem. They thought that lack of\ud experience caused their major problems: insufficient and inadequate care. To improve care, we proposed a solution that combines a “short MS-protocol”, the\ud introduction of a central coordinator of care and a Patient Relation Management (PRM) System. This is a simple web-based application that is based on agreement by the caregivers that supports routing, tracking and tracing of a MS patient and supplies the caregivers with professional guidelines, as written down in the protocol. It is likely that we would have suggested a far more complicated ICT solution if we had only analyzed the MS-care process as such, without specific consideration of the USE IT dimensions

    A Consent-based Workflow System for Healthcare Systems

    Get PDF
    In this paper, we describe a new framework for healthcare systems where patients are able to control the disclosure of their medical data. In our framework, the patient's consent has a pivotal role in granting or removing access rights to subjects accessing patient's medical data. Depending on the context in which the access is being executed, different consent policies can be applied. Context is expressed in terms of workflows. The execution of a task in a given workflow carries the necessary information to infer whether the consent can be implicitly retrieved or should be explicitly requested from a patient. However, patients are always able to enforce their own decisions and withdraw consent if necessary. Additionally, the use of workflows enables us to apply the need-to-know principle. Even when the patient's consent is obtained, a subject should access medical data only if it is required by the actual situation. For example, if the subject is assigned to the execution of a medical diagnosis workflow requiring access to the patient's medical record. We also provide a complex medical case study to highlight the design principles behind our framework. Finally, the implementation of the framework is outlined

    Digital service analysis and design : the role of process modelling

    Get PDF
    Digital libraries are evolving from content-centric systems to person-centric systems. Emergent services are interactive and multidimensional, associated systems multi-tiered and distributed. A holistic perspective is essential to their effective analysis and design, for beyond technical considerations, there are complex social, economic, organisational, and ergonomic requirements and relationships to consider. Such a perspective cannot be gained without direct user involvement, yet evidence suggests that development teams may be failing to effectively engage with users, relying on requirements derived from anecdotal evidence or prior experience. In such instances, there is a risk that services might be well designed, but functionally useless. This paper highlights the role of process modelling in gaining such perspective. Process modelling challenges, approaches, and success factors are considered, discussed with reference to a recent evaluation of usability and usefulness of a UK National Health Service (NHS) digital library. Reflecting on lessons learnt, recommendations are made regarding appropriate process modelling approach and application

    Authorization and access control of application data in Workflow systems

    Get PDF
    Workflow Management Systems (WfMSs) are used to support the modeling and coordinated execution of business processes within an organization or across organizational boundaries. Although some research efforts have addressed requirements for authorization and access control for workflow systems, little attention has been paid to the requirements as they apply to application data accessed or managed by WfMSs. In this paper, we discuss key access control requirements for application data in workflow applications using examples from the healthcare domain, introduce a classification of application data used in workflow systems by analyzing their sources, and then propose a comprehensive data authorization and access control mechanism for WfMSs. This involves four aspects: role, task, process instance-based user group, and data content. For implementation, a predicate-based access control method is used. We believe that the proposed model is applicable to workflow applications and WfMSs with diverse access control requirements
    corecore