12,947 research outputs found

    From Sensors Data to Urban Traffic Flow Analysis

    Get PDF
    By 2050, almost 70% of the population will live in cities. As the population grows, travel demand increases and this might affect air quality in urban areas. Traffic is among the main sources of pollution within cities. Therefore, monitoring urban traffic means not only identifying congestion and managing accidents but also preventing the impact on air pollution. Urban traffic modeling and analysis is part of the advanced traffic intelligent management technologies that has become a crucial sector for smart cities. Its main purpose is to predict congestion states of a specific urban transport network and propose improvements in the traffic network that might result into a decrease of the travel times, air pollution and fuel consumption. This paper describes the implementation of an urban traffic flow model in the city of Modena based on real traffic sensor data. This is part of a wide European project that aims at studying the correlation among traffic and air pollution, therefore at combining traffic and air pollution simulations for testing various urban scenarios and raising citizen awareness about air quality where necessary

    A Survey of Data Fusion in Smart City Applications

    Full text link
    The advancement of various research sectors such as Internet of Things (IoT), Machine Learning, Data Mining, Big Data, and Communication Technology has shed some light in transforming an urban city integrating the aforementioned techniques to a commonly known term - Smart City. With the emergence of smart city, plethora of data sources have been made available for wide variety of applications. The common technique for handling multiple data sources is data fusion, where it improves data output quality or extracts knowledge from the raw data. In order to cater evergrowing highly complicated applications, studies in smart city have to utilize data from various sources and evaluate their performance based on multiple aspects. To this end, we introduce a multi-perspectives classification of the data fusion to evaluate the smart city applications. Moreover, we applied the proposed multi-perspectives classification to evaluate selected applications in each domain of the smart city. We conclude the paper by discussing potential future direction and challenges of data fusion integration.Comment: Accepted and To be published in Elsevier Information Fusio

    SONYC: A System for the Monitoring, Analysis and Mitigation of Urban Noise Pollution

    Full text link
    We present the Sounds of New York City (SONYC) project, a smart cities initiative focused on developing a cyber-physical system for the monitoring, analysis and mitigation of urban noise pollution. Noise pollution is one of the topmost quality of life issues for urban residents in the U.S. with proven effects on health, education, the economy, and the environment. Yet, most cities lack the resources to continuously monitor noise and understand the contribution of individual sources, the tools to analyze patterns of noise pollution at city-scale, and the means to empower city agencies to take effective, data-driven action for noise mitigation. The SONYC project advances novel technological and socio-technical solutions that help address these needs. SONYC includes a distributed network of both sensors and people for large-scale noise monitoring. The sensors use low-cost, low-power technology, and cutting-edge machine listening techniques, to produce calibrated acoustic measurements and recognize individual sound sources in real time. Citizen science methods are used to help urban residents connect to city agencies and each other, understand their noise footprint, and facilitate reporting and self-regulation. Crucially, SONYC utilizes big data solutions to analyze, retrieve and visualize information from sensors and citizens, creating a comprehensive acoustic model of the city that can be used to identify significant patterns of noise pollution. These data can be used to drive the strategic application of noise code enforcement by city agencies to optimize the reduction of noise pollution. The entire system, integrating cyber, physical and social infrastructure, forms a closed loop of continuous sensing, analysis and actuation on the environment. SONYC provides a blueprint for the mitigation of noise pollution that can potentially be applied to other cities in the US and abroad.Comment: Accepted May 2018, Communications of the ACM. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record will be published in Communications of the AC

    Deep-MAPS: Machine Learning based Mobile Air Pollution Sensing

    Full text link
    Mobile and ubiquitous sensing of urban air quality has received increased attention as an economically and operationally viable means to survey atmospheric environment with high spatial-temporal resolution. This paper proposes a machine learning based mobile air pollution sensing framework, called Deep-MAPS, and demonstrates its scientific and financial values in the following aspects. (1) Based on a network of fixed and mobile air quality sensors, we perform spatial inference of PM2.5 concentrations in Beijing (3,025 km2, 19 Jun-16 Jul 2018) for a spatial-temporal resolution of 1km-by-1km and 1 hour, with over 85% accuracy. (2) We leverage urban big data to generate insights regarding the potential cause of pollution, which facilitates evidence-based sustainable urban management. (3) To achieve such spatial-temporal coverage and accuracy, Deep-MAPS can save up to 90% hardware investment, compared with ubiquitous sensing that relies primarily on fixed sensors.Comment: 10 pages, 4 figures, 1 tabl

    Urban lighting project for a small town: comparing citizens and authority benefits

    Get PDF
    The smart and resilient city evolves by slow procedures of mutation without radical changes, increasing the livability of its territory. The value of the city center in a Smart City can increase through urban lighting systems: its elements on the territory can collect and convey data to increase services to city users; the electrical system becomes the so-called Smart Grid. This paper presents a study of smart lighting for a small town, a touristic location inside a nature reserve on the Italian coast. Three different approaches have been proposed, from minimal to more invasive interventions, and their effect on the territory has been investigated. Based on street typology and its surroundings, the work analyzes the opportunity to introduce smart and useful services for the citizens starting from a retrofitting intervention. Smart city capabilities are examined, showing how it is possible to provide new services to the cities through ICT (Information and Communication Technology) without deep changes and simplifying the control of basic city functions. The results evidence an important impact on annual energy costs, suggesting smart grid planning not only for metropolis applications, but also in smaller towns, such as the examined one

    Bayesian Particle Tracking of Traffic Flows

    Full text link
    We develop a Bayesian particle filter for tracking traffic flows that is capable of capturing non-linearities and discontinuities present in flow dynamics. Our model includes a hidden state variable that captures sudden regime shifts between traffic free flow, breakdown and recovery. We develop an efficient particle learning algorithm for real time on-line inference of states and parameters. This requires a two step approach, first, resampling the current particles, with a mixture predictive distribution and second, propagation of states using the conditional posterior distribution. Particle learning of parameters follows from updating recursions for conditional sufficient statistics. To illustrate our methodology, we analyze measurements of daily traffic flow from the Illinois interstate I-55 highway system. We demonstrate how our filter can be used to inference the change of traffic flow regime on a highway road segment based on a measurement from freeway single-loop detectors. Finally, we conclude with directions for future research

    A Comparative Study of Various Routing Protocols in VANET

    Full text link
    Vehicular Ad Hoc Networks (VANET) is a subclass of Mobile ad hoc networks which provides a distinguished approach for Intelligent Transport System (ITS). The survey of routing protocols in VANET is important and necessary for smart ITS. This paper discusses the advantages / disadvantages and the applications of various routing protocols for vehicular ad hoc networks. It explores the motivation behind the designed, and traces the evolution of these routing protocols. F inally the paper concludes by a tabular comparison of the various routing protocols for VANET.Comment: 6 pages, 1 figure and 2 table

    Towards Smarter Management of Overtourism in Historic Centres Through Visitor-Flow Monitoring

    Get PDF
    Historic centres are highly regarded destinations for watching and even participating in diverse and unique forms of cultural expression. Cultural tourism, according to the World Tourism Organization (UNWTO), is an important and consolidated tourism sector and its strong growth is expected to continue over the coming years. Tourism, the much dreamt of redeemer for historic centres, also represents one of the main threats to heritage conservation: visitors can dynamize an economy, yet the rapid growth of tourism often has negative effects on both built heritage and the lives of local inhabitants. Knowledge of occupancy levels and flows of visiting tourists is key to the efficient management of tourism; the new technologies—the Internet of Things (IoT), big data, and geographic information systems (GIS)—when combined in interconnected networks represent a qualitative leap forward, compared to traditional methods of estimating locations and flows. A methodology is described in this paper for the management of tourism flows that is designed to promote sustainable tourism in historic centres through intelligent support mechanisms. As part of the Smart Heritage City (SHCITY) project, a collection system for visitors is developed. Following data collection via monitoring equipment, the analysis of a set of quantitative indicators yields information that can then be used to analyse visitor flows; enabling city managers to make management decisions when the tourism-carrying capacity is exceeded and gives way to overtourism.Funded by the Interreg Sudoe Programme of the European Regional Development Funds (ERDF

    Vehicle to Vehicle (V2V) Communication for Collision Avoidance for Multi-Copters Flying in UTM -TCL4

    Get PDF
    NASAs UAS Traffic management (UTM) research initiative is aimed at identifying requirements for safe autonomous operations of UAS operating in dense urban environments. For complete autonomous operations vehicle to vehicle (V2V) communications has been identified as an essential tool. In this paper we simulate a complete urban operations in an high fidelity simulation environment. We design a V2V communication protocol and all the vehicles participating communicate over this system. We show how V2V communication can be used for finding feasible, collision-free paths for multi agent systems. Different collision avoidance schemes are explored and an end to end simulation study shows the use of V2V communication for UTM TCL4 deployment

    Smarter Cities with Parked Cars as Roadside Units

    Full text link
    Real-time monitoring of traffic density, road congestion, public transportation, and parking availability are key to realizing the vision of a smarter city and, with the advent of vehicular networking technologies such as IEEE 802.11p and WAVE, this information can now be gathered directly from the vehicles in an urban area. To act as a backbone to the network of moving vehicles, collecting, aggregating, and disseminating their information, the use of parked cars has been proposed as an alternative to costly deployments of fixed Roadside Units. In this paper, we introduce novel mechanisms for parking vehicles to self-organize and form efficient vehicular support networks that provide widespread coverage to a city. These mechanisms are innovative in their ability to keep the network of parked cars under continuous optimization, in their multi-criteria decision process that can be focused on key network performance metrics, and in their ability to manage the battery usage of each car, rotating roadside unit roles between vehicles as required. We also present the first comprehensive study of the performance of such an approach, via realistic modeling of mobility, parking, and communication, thorough simulations, and an experimental verification of concepts that are key to self-organization. Our analysis brings strong evidence that parked cars can serve as an alternative to fixed roadside units, and organize to form networks that can support smarter transportation and mobility
    • …
    corecore