9,822 research outputs found

    Workshop on NASA workstation technology

    Get PDF
    RIACS hosted a workshop which was designed to foster communication among those people within NASA working on workstation related technology, to share technology, and to learn about new developments and futures in the larger university and industrial workstation communities. Herein, the workshop is documented along with its conclusions. It was learned that there is both a large amount of commonality of requirements and a wide variation in the modernness of in-use technology among the represented NASA centers

    Denotation and connotation in the human-computer interface: The ‘Save as...’ command

    Get PDF
    This paper presents a semiotic technique as a means of exploring meaning and understanding in interface design and use. This is examined through a study of the interaction between the ‘file’ metaphor and ‘save as’ command metaphor. The behaviour of these (from a functional or computational basis) do not exactly match, or map onto, the meaning of the metaphor. We examine both the denotation of a term to the user, i.e. its literal meaning to that person, and the term’s connotations, i.e. any other meanings associated with the term. We suggest that the technique applied is useful in predicting future problems with understanding the use of metaphor at the interface and with designing appropriate signification for human-computer interaction. Variation in connotation was expected but a more fundamental difference in denotation was also uncovered. Moreover, the results clearly demonstrate that consistency in the denotation of a term is critical in achieving a good user understanding of the command

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Using multimedia interfaces for speech therapy

    Get PDF

    Isabelle/PIDE as Platform for Educational Tools

    Full text link
    The Isabelle/PIDE platform addresses the question whether proof assistants of the LCF family are suitable as technological basis for educational tools. The traditionally strong logical foundations of systems like HOL, Coq, or Isabelle have so far been counter-balanced by somewhat inaccessible interaction via the TTY (or minor variations like the well-known Proof General / Emacs interface). Thus the fundamental question of math education tools with fully-formal background theories has often been answered negatively due to accidental weaknesses of existing proof engines. The idea of "PIDE" (which means "Prover IDE") is to integrate existing provers like Isabelle into a larger environment, that facilitates access by end-users and other tools. We use Scala to expose the proof engine in ML to the JVM world, where many user-interfaces, editor frameworks, and educational tools already exist. This shall ultimately lead to combined mathematical assistants, where the logical engine is in the background, without obstructing the view on applications of formal methods, formalized mathematics, and math education in particular.Comment: In Proceedings THedu'11, arXiv:1202.453

    Emerging from the MIST: A Connector Tool for Supporting Programming by Non-programmers

    Get PDF
    Software development is an iterative process. As user re-quirements emerge software applications must be extended to support the new requirements. Typically, a programmer will add new code to an existing code base of an application to provide a new functionality. Previous research has shown that such extensions are easier when application logic is clearly separated from the user interface logic. Assuming that a programmer is already familiar with the existing code base, the task of writing the new code can be considered to be split into two sub-tasks: writing code for the application logic; that is, the actual functionality of the application; and writing code for the user interface that will expose the functionality to the end user. The goal of this research is to reduce the effort required to create a user interface once the application logic has been created, toward supporting scientists with minimal pro-gramming knowledge to be able to create and modify pro-grams. Using a Model View Controller based architecture, various model components which contain the application logic can be built and extended. The process of creating and extending the views (user interfaces) on these model components is simplified through the use of our Malleable Interactive Software Toolkit (MIST), a tool set an infrastructure intended to simplify the design and extension of dynamically reconfigurable interfaces. This paper focuses on one tool in the MIST suite, a connec-tor tool that enables the programmer to evolve the user interface as the application logic evolves by connecting related pieces of code together; either through simple drag-and-drop interactions or through the authoring of Python code. The connector tool exemplifies the types of tools in the MIST suite, which we expect will encourage collabora-tive development of applications by allowing users to inte-grate various components and minimizing the cost of de-veloping new user interfaces for the combined compo-nents
    corecore