87,701 research outputs found

    Green Cloud - Load Balancing, Load Consolidation using VM Migration

    Get PDF
    Recently, cloud computing is a new trend emerging in computer technology with a massive demand from the clients. To meet all requirements, a lot of cloud data centers have been constructed since 2008 when Amazon published their cloud service. The rapidly growing data center leads to the consumption of a tremendous amount of energy even cloud computing has better improved in the performance and energy consumption, but cloud data centers still absorb an immense amount of energy. To raise company’s income annually, the cloud providers start considering green cloud concepts which gives an idea about how to optimize CPU’s usage while guaranteeing the quality of service. Many cloud providers are paying more attention to both load balancing and load consolidation which are two significant components of a cloud data center. Load balancing is taken into account as a vital part of managing income demand, improving the cloud system’s performance. Live virtual machine migration is a technique to perform the dynamic load balancing algorithm. To optimize the cloud data center, three issues are considered: First, how does the cloud cluster distribute the virtual machine (VM) requests from clients to all physical machine (PM) when each computer has a different capacity. Second, what is the solution to make CPU’s usage of all PMs to be nearly equal? Third, how to handle two extreme scenarios: rapidly rising CPU’s usage of a PM due to sudden massive workload requiring VM migration immediately and resources expansion to respond to substantial cloud cluster through VM requests. In this chapter, we provide an approach to work with those issues in the implementation and results. The results indicated that the performance of the cloud cluster was improved significantly. Load consolidation is the reverse process of load balancing which aims to provide sufficient cloud servers to handle the client requests. Based on the advance of live VM migration, cloud data center can consolidate itself without interrupting the cloud service, and superfluous PMs are turned to save mode to reduce the energy consumption. This chapter provides a solution to approach load consolidation including implementation and simulation of cloud servers

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    VM Selection Process Management for Live Migration in Cloud Data Centers

    Get PDF
    With immense success and fast growth within the past few years, cloud computing has been established as the dominant computing paradigm in information technology (IT) industry, wherein it utilizes dissipated resource benefits and supports resource sharing and time access flexibility. The proliferation of cloud computing has resulted in the establishment of large-scale data centers across the world, consisting of hundreds of thousands, even millions of servers. The emerging cloud computing paradigm provides administrators and IT organizations with considerable freedom to dynamically migrate virtualized computing services among physical servers in cloud data centers. Normally, these data centers incur very high investment and operating costs for the computing and network devices as well as for the energy consumption. Virtualization and virtual machine (VM) migration offers significant benefits such as load balancing, server consolidation, online maintenance and proactive fault tolerance along data centers. VM migration relies on how to determine the trigger condition of VM migration, select the target virtual machine, and choose the destination node. As a result, dynamic VM migration in the scope of resource management is becoming a crucial issue to emphasize on optimal resource utilization, maximum throughput, minimum response time, enhancing scalability, avoiding over-provisioning of resources and prevention of overload to make cloud computing successful. Intelligent host underload/overload detection, VM selection, and VM placement are the primary means to address VM migration issue. Therefore, these three problems are considered to be the most common tasks in VM migration. This thesis presents novel techniques, models, and algorithms, for distributed dynamic consolidation of virtual machines in cloud data centers. The goal is to improve the utilization of computing resources and reduce energy consumption under workload independent quality of service constraints. The proposed approaches are distributed and efficient in managing the energy-performance trade-off

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Deep Reinforcement Learning Framework with Q Learning For Optimal Scheduling in Cloud Computing

    Get PDF
    Cloud computing is an emerging technology that is increasingly being appreciated for its diverse uses, encompassing data processing, The Internet of Things (IoT) and the storing of data. The continuous growth in the number of cloud users and the widespread use of IoT devices have resulted in a significant increase in the volume of data being generated by these users and the integration of IoT devices with cloud platforms. The process of managing data stored in the cloud has become more challenging to complete. There are numerous significant challenges that must be overcome in the process of migrating all data to cloud-hosted data centers. High bandwidth consumption, longer wait times, greater costs, and greater energy consumption are only some of the difficulties that must be overcome. Cloud computing, as a result, is able to allot resources in line with the specific actions made by users, which is a result of the conclusion that was mentioned earlier. This phenomenon can be attributed to the provision of a superior Quality of Service (QoS) to clients or users, with an optimal response time. Additionally, adherence to the established Service Level Agreement further contributes to this outcome. Due to this circumstance, it is of utmost need to effectively use the computational resources at hand, hence requiring the formulation of an optimal approach for task scheduling. The goal of this proposed study is to find ways to allocate and schedule cloud-based virtual machines (VMs) and tasks in such a way as to reduce completion times and associated costs. This study presents a new method of scheduling that makes use of Q-Learning to optimize the utilization of resources.The algorithm's primary goals include optimizing its objective function, building the ideal network, and utilizing experience replay techniques
    • …
    corecore