27,655 research outputs found

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    Software dependability modeling using an industry-standard architecture description language

    Full text link
    Performing dependability evaluation along with other analyses at architectural level allows both making architectural tradeoffs and predicting the effects of architectural decisions on the dependability of an application. This paper gives guidelines for building architectural dependability models for software systems using the AADL (Architecture Analysis and Design Language). It presents reusable modeling patterns for fault-tolerant applications and shows how the presented patterns can be used in the context of a subsystem of a real-life application

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Proactive cloud management for highly heterogeneous multi-cloud infrastructures

    Get PDF
    Various literature studies demonstrated that the cloud computing paradigm can help to improve availability and performance of applications subject to the problem of software anomalies. Indeed, the cloud resource provisioning model enables users to rapidly access new processing resources, even distributed over different geographical regions, that can be promptly used in the case of, e.g., crashes or hangs of running machines, as well as to balance the load in the case of overloaded machines. Nevertheless, managing a complex geographically-distributed cloud deploy could be a complex and time-consuming task. Autonomic Cloud Manager (ACM) Framework is an autonomic framework for supporting proactive management of applications deployed over multiple cloud regions. It uses machine learning models to predict failures of virtual machines and to proactively redirect the load to healthy machines/cloud regions. In this paper, we study different policies to perform efficient proactive load balancing across cloud regions in order to mitigate the effect of software anomalies. These policies use predictions about the mean time to failure of virtual machines. We consider the case of heterogeneous cloud regions, i.e regions with different amount of resources, and we provide an experimental assessment of these policies in the context of ACM Framework

    Validation of a software dependability tool via fault injection experiments

    Get PDF
    Presents the validation of the strategies employed in the RECCO tool to analyze a C/C++ software; the RECCO compiler scans C/C++ source code to extract information about the significance of the variables that populate the program and the code structure itself. Experimental results gathered on an Open Source Router are used to compare and correlate two sets of critical variables, one obtained by fault injection experiments, and the other applying the RECCO tool, respectively. Then the two sets are analyzed, compared, and correlated to prove the effectiveness of RECCO's methodology
    • 

    corecore