1,903 research outputs found

    Managing Contingencies in Smart Grids via the Internet of Things

    Get PDF
    This paper proposes a framework for contingency management using smart loads, which are realized through the emerging paradigm of the Internet of things. The framework involves the system operator, the load serving entities (LSEs), and the end-users with smart home management systems that automatically control adjustable loads. The system operator uses an efficient linear equation solver to quickly calculate the load curtailment needed at each bus to relieve congested lines after a contingency. Given this curtailment request, an LSE calculates a power allowance for each of its end-use customers to maximize the aggregate user utility. This large-scale NP-hard problem is approximated to a convex optimization for efficient computation. A smart home management system determines the appliances allowed to be used in order to maximize the user's utility within the power allowance given by the LSE. Since the user's utility depends on the near-future usage of the appliances, the framework provides the Welch-based reactive appliance prediction (WRAP) algorithm to predict the user behavior and maximize utility. The proposed framework is validated using the New England 39-bus test system. The results show that power system components at risk can be quickly alleviated by adjusting a large number of small smart loads. Additionally, WRAP accurately predicts the users' future behavior, minimizing the impact on the aggregate users' utility

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Smart grids as distributed learning control

    Get PDF
    The topic of smart grids has received a lot of attention but from a scientific point of view it is a highly imprecise concept. This paper attempts to describe what could ultimately work as a control process to fulfill the aims usually stated for such grids without throwing away some important principles established by the pioneers in power system control. In modern terms, we need distributed (or multi-agent) learning control which is suggested to work with a certain consensus mechanism which appears to leave room for achieving cyber-physical security, robustness and performance goals. © 2012 IEEE.published_or_final_versio

    Challenges, issues and opportunities for the development of smart grid

    Get PDF
    The development smart grids have made the power systems planning and operation more efficient by the application of renewable energy resources, electric vehicles, two-way communication, self-healing, consumer engagement, distribution intelligence, etc. The objective of this paper is to present a detailed comprehensive review of challenges, issues and opportunities for the development of smart grid. Smart grids are transforming the traditional way of meeting the electricity demand and providing the way towards an environmentally friendly, reliable and resilient power grid. This paper presents various challenges of smart grid development including interoperability, network communications, demand response, energy storage and distribution grid management. This paper also reviews various issues associated with the development of smart grid. Local, regional, national and global opportunities for the development of smart grid are also reported in this paper

    Internet of Things Applications as Energy Internet in Smart Grids and Smart Environments

    Get PDF
    Energy Internet (EI) has been recently introduced as a new concept, which aims to evolve smart grids by integrating several energy forms into an extremely flexible and effective grid. In this paper, we have comprehensively analyzed Internet of Things (IoT) applications enabled for smart grids and smart environments, such as smart cities, smart homes, smart metering, and energy management infrastructures to investigate the development of the EI based IoT applications. These applications are promising key areas of the EI concept, since the IoT is considered one of the most important driving factors of the EI. Moreover, we discussed the challenges, open issues, and future research opportunities for the EI concept based on IoT applications and addressed some important research areas

    Emerging Smart Meters in Electrical Distribution Systems: Opportunities and Challenges

    Get PDF
    High penetration of variable and non-programmable distributed generation has brought new challenges to the power system operation and is highlighting the need of a smarter grid. One of the key requirements in this regard is developing and deploying smart metering systems in distribution networks. In this paper we present the actual situation in the Italian distribution networks and we discuss the opportunities and challenges of applying new metering systems and introducing a flexible, multi-utility, multi-service metering architecture. Some off-the-shelf or prototype smart meters, selected to be tested in an ongoing European project, named FLEXMETER, are presented
    corecore