59 research outputs found

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required

    Network Infrastructures for Highly Distributed Cloud-Computing

    Get PDF
    Software-Defined-Network (SDN) is emerging as a solid opportunity for the Network Service Providers (NSP) to reduce costs while at the same time providing better and/or new services. The possibility to flexibly manage and configure highly-available and scalable network services through data model abstractions and easy-to-consume APIs is attractive and the adoption of such technologies is gaining momentum. At the same time, NSPs are planning to innovate their infrastructures through a process of network softwarisation and programmability. The SDN paradigm aims at improving the design, configuration, maintenance and service provisioning agility of the network through a centralised software control. This can be easily achievable in local area networks, typical of data-centers, where the benefits of having programmable access to the entire network is not restricted by latency between the network devices and the SDN controller which is reasonably located in the same LAN of the data path nodes. In Wide Area Networks (WAN), instead, a centralised control plane limits the speed of responsiveness in reaction to time-constrained network events due to unavoidable latencies caused by physical distances. Moreover, an end-to-end control shall involve the participation of multiple, domain-specific, controllers: access devices, data-center fabrics and backbone networks have very different characteristics and their control-plane could hardly coexist in a single centralised entity, unless of very complex solutions which inevitably lead to software bugs, inconsistent states and performance issues. In recent years, the idea to exploit SDN for WAN infrastructures to connect multiple sites together has spread in both the scientific community and the industry. The former has produced interesting results in terms of framework proposals, complexity and performance analysis for network resource allocation schemes and open-source proof of concept prototypes targeting SDN architectures spanning multiple technological and administrative domains. On the other hand, much of the work still remains confined to the academy mainly because based on pure Openflow prototype implementation, networks emulated on a single general-purpose machine or on simulations proving algorithms effectiveness. The industry has made SDN a reality via closed-source systems, running on single administrative domain networks with little if no diversification of access and backbone devices. In this dissertation we present our contributions to the design and the implementation of SDN architectures for the control plane of WAN infrastructures. In particular, we studied and prototyped two SDN platforms to build a programmable, intent-based, control-plane suitable for the today highly distributed cloud infrastructures. Our main contributions are: (i) an holistic and architectural description of a distributed SDN control-plane for end-end QoS provisioning; we compare the legacy IntServ RSVP protocol with a novel approach for prioritising application-sensitive flows via centralised vantage points. It is based on a peer-to-peer architecture and could so be suitable for the inter-authoritative domains scenario. (ii) An open-source platform based on a two-layer hierarchy of network controllers designed to provision end-to-end connectivity in real networks composed by heterogeneous devices and links within a single authoritative domain. This platform has been integrated in CORD, an open-source project whose goal is to bring data-center economics and cloud agility to the NSP central office infrastructures, combining NFV (Network Function Virtualization), SDN and the elasticity of commodity clouds. Our platform enables the provisioning of connectivity services between multiple CORD sites, up to the customer premises. Thus our system and software contributions in SDN has been combined with a NFV infrastructure for network service automation and orchestration

    Proposition de Projet MADYNES : Supervision des réseaux et services dynamiques

    Get PDF
    Rapport interne.Le projet MADYNES vise la conception, la validation et la mise en oeuvre de nouveaux paradigmes et architectures de supervision et de contrôle capables : (1) de maîtriser la dynamicité croissante des infrastructures et services de télécommunications et (2) de résister au facteur d'échelle induit par l'Internet ubiquitaire

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    • …
    corecore