3 research outputs found

    A Sparse Program Dependence Graph For Object Oriented Programming Languages

    Get PDF
    The Program Dependence Graph (PDG) has achieved widespread acceptance as a useful tool for software engineering, program analysis, and automated compiler optimizations. This thesis presents the Sparse Object Oriented Program Dependence Graph (SOOPDG), a formalism that contains elements of traditional PDG\u27s adapted to compactly represent programs written in object-oriented languages such as Java. This formalism is called sparse because, in contrast to other OO and Java-specific adaptations of PDG\u27s, it introduces few node types and no new edge types beyond those used in traditional dependence-based representations. This results in correct program representations using smaller graph structures and simpler semantics when compared to other OO formalisms. We introduce the Single Flow to Use (SFU) property which requires that exactly one definition of each variable be available for each use. We demonstrate that the SOOPDG, with its support for the SFU property coupled with a higher order rewriting semantics, is sufficient to represent static Java-like programs and dynamic program behavior. We present algorithms for creating SOOPDG representations from program text, and describe graph rewriting semantics. We also present algorithms for common static analysis techniques such as program slicing, inheritance analysis, and call chain analysis. We contrast the SOOPDG with two previously published OO graph structures, the Java System Dependence Graph and the Java Software Dependence Graph. The SOOPDG results in comparatively smaller static representations of programs, cleaner graph semantics, and potentially more accurate program analysis. Finally, we introduce the Simulation Dependence Graph (SDG). The SDG is a related representation that is developed specifically to represent simulation systems, but is extensible to more general component-based software design paradigms. The SDG allows formal reasoning about issues such as component composition, a property critical to the creation and analysis of complex simulation systems and component-based design systems

    Parallel and Distributed Execution of Model Management Programs

    Get PDF
    The engineering process of complex systems involves many stakeholders and development artefacts. Model-Driven Engineering (MDE) is an approach to development which aims to help curtail and better manage this complexity by raising the level of abstraction. In MDE, models are first-class artefacts in the development process. Such models can be used to describe artefacts of arbitrary complexity at various levels of abstraction according to the requirements of their prospective stakeholders. These models come in various sizes and formats and can be thought of more broadly as structured data. Since models are the primary artefacts in MDE, and the goal is to enhance the efficiency of the development process, powerful tools are required to work with such models at an appropriate level of abstraction. Model management tasks – such as querying, validation, comparison, transformation and text generation – are often performed using dedicated languages, with declarative constructs used to improve expressiveness. Despite their semantically constrained nature, the execution engines of these languages rarely capitalize on the optimization opportunities afforded to them. Therefore, working with very large models often leads to poor performance when using MDE tools compared to general-purpose programming languages, which has a detrimental effect on productivity. Given the stagnant single-threaded performance of modern CPUs along with the ubiquity of distributed computing, parallelization of these model management program is a necessity to address some of the scalability concerns surrounding MDE. This thesis demonstrates efficient parallel and distributed execution algorithms for model validation, querying and text generation and evaluates their effectiveness. By fully utilizing the CPUs on 26 hexa-core systems, we were able to improve performance of a complex model validation language by 122x compared to its existing sequential implementation. Up to 11x speedup was achieved with 16 cores for model query and model-to-text transformation tasks

    Managing Compilation Overheads in a Runtime Specializer for OpenMP Abstract

    No full text
    While runtime compilation has in practice been largely restricted to programming languages that execute on virtual machines, such as Java and C#, parallel OpenMP programs show many promising traits for efficient and effective runtime optimization. The stOMP system for the runtime optimization of OpenMP applications is currently under development at the University of Toronto. One of the key issues in making stOMP successful is to minimize the overheads incurred when invoking compilers at runtime. This paper focuses on two techniques that have been developed to manage these overheads: a two-level, context-based hot-spot detector and a pruning mechanism that eliminates poorly behaved variables as specialization targets. A detailed presentation of both techniques is presented along with evaluations of the techniques on a subset of the SPEC OMP benchmark suite. Initial results from a prototype version of the stOMP specializer are also provided.
    corecore