36,790 research outputs found

    A Model-Based Approach to Managing Feature Binding Time in Software Product Line Engineering

    Get PDF
    Software Product Line Engineering (SPLE) is a software reuse paradigm for developing software products, from managed reusable assets, based on analysis of commonality and variability (C & V) of a product line. Many approaches of SPLE use a feature as a key abstraction to capture the C&V. Recently, there have been increasing demands for the provision of flexibility about not only the variability of features but also the variability of when features should be selected (i.e., variability on feature binding times). Current approaches to support variations of feature binding time mostly focused on ad hoc implementation mechanisms. In this paper, we first identify the challenges of feature binding time management and then propose an approach to analyze the variation of feature binding times and use the results to specify model-based architectural components for the product line. Based on the specification, components implementing variable features are parameterized with the binding times and the source codes for the components and the connection between them are generated

    A make/buy/reuse feature development framework for product line evolution

    Get PDF

    Enhancing modeling and change support for process families through change patterns

    Get PDF
    The increasing adoption of process-aware information systems (PAISs), together with the variability of business processes (BPs), has resulted in large collections of related process model variants (i.e., process families). To effectively deal with process families, several proposals (e.g., C-EPC, Provop) exist that extend BP modeling languages with variability-specific constructs. While fostering reuse and reducing modeling efforts, respective constructs imply additional complexity and demand proper support for process designers when creating and modifying process families. Recently, generic and language independent adaptation patterns were successfully introduced for creating and evolving single BP models. However, they are not sufficient to cope with the specific needs for modeling and evolving process families. This paper suggests a complementary set of generic and language-independent change patterns specifically tailored to the needs of process families. When used in combination with existing adaptation patterns, change patterns for process families will enable the modeling and evolution of process families at a high-level of abstraction. Further, they will serve as reference for implementing tools or comparing proposals managing process families. © 2013 Springer-Verlag.This work has been developed with the support of MICINN under the Project EVERYWARE TIN2010-18011.Ayora Esteras, C.; Torres Bosch, MV.; Weber, B.; Reichert, M.; Pelechano Ferragud, V. (2013). Enhancing modeling and change support for process families through change patterns. En Enterprise, Business-Process and Information Systems Modeling, BPMDS 2013. Springer Verlag. 246-260. https://doi.org/10.1007/978-3-642-38484-4_18S246260van der Aalst, W.M.P., ter Hofstede, A.H.M., Barros, B.: Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportunities for extension and reuse. In: Proc. SERA 2009, pp. 265–275 (2009)Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time flexibility for process families: Open issues and research challenges. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 477–488. Springer, Heidelberg (2013)Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Change patterns for process families. Technical Report, PROS-TR-2012-06, http://www.pros.upv.es/technicalreports/PROS-TR-2012-06.pdfDadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust and flexible process support. Com. Sci. - R&D 23, 81–97 (2009)Dijkman, R., La Rosa, M., Reijers, H.A.: Managing large collections of business process models - Current techniques and challenges. Comp. in Ind. 63(2), 91–97 (2012)Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime using BPMN2 adaptation patterns. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 25–36. Springer, Heidelberg (2011)Gottschalk, F.: Configurable process models. Ph.D. thesis, Eindhoven University of Technology, The Netherlands (2009)Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into software engineering processes. Intl. J. Adv. in Software 4, 76–99 (2011)Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 4–19. Springer, Heidelberg (2008)Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining in adaptive process management systems. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process variants. In: Proc. TCoB 2008, pp. 31–40 (2008)Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the Provop approach. J. of Software Maintenance 22(6-7), 519–546 (2010)Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in Software Engineering, Technical Report EBSE/EPIC–2007–01 (2007)Kulkarni, V., Barat, S., Roychoudhury, S.: Towards business application product lines. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 285–301. Springer, Heidelberg (2012)Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model differences in the absence of a change log. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)Küster, J.M., Gerth, C., Engels, G.: Dynamic computation of change operations in version management of business process models. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 201–216. Springer, Heidelberg (2010)Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems. Requirements Engineering, 1–29 (2012)La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-based variability modeling for system configuration. Software and System Modeling 8(2), 251–274 (2009)Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.: Exception Handling Patterns for Process Modeling. IEEE Transactions on Software Engineering 36(2), 162–183 (2010)Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges, scenarios, algorithms. Data Knowledge & Engineering 70(5), 409–434 (2011)Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through workflow enactment and planning. In: Proc. CollaborateCom 2011, pp. 372–381 (2011)Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management processes in the automotive industry. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems: challenges, methods, technologies. Springer (2012)Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organizational reference models: supporting an adequate design of local business processes. IBPIM 4(2), 134–149 (2009)Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling language. Information Systems 32(1), 1–23 (2007)Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow data patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of Technology (2004)Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow resource patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception Patterns. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg (2006)Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action patterns in process model repositories. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 251–263. Springer, Heidelberg (2011)Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - Enhancing flexibility in process-aware information systems. Data Knowledge & Engineering 66, 438–466 (2008)Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity - dynamic process lifecycle support. Computer Science 23, 47–65 (2009)Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: Refactoring large process model repositories. Computers in Industry 62(5), 467–486 (2011

    Requirements and Tools for Variability Management

    Get PDF
    Explicit and software-supported Business Process Management has become the core infrastructure of any medium and large organization that has a need to be efficient and effective. The number of processes of a single organization can be very high, furthermore, they might be very similar, be in need of momentary change, or evolve frequently. If the ad-hoc adaptation and customization of processes is currently the dominant way, it clearly is not the best. In fact, providing tools for supporting the explicit management of variation in processes (due to customization or evolution needs) has a profound impact on the overall life-cycle of processes in organizations. Additionally, with the increasing adoption of Service-Oriented Architectures, the infrastructure to support automatic reconfiguration and adaptation of business process is solid. In this paper, after defining variability in business process management, we consider the requirements for explicit variation handling for (service based) business process systems. eGovernment serves as an illustrative example of reuse. In this case study, all local municipalities need to implement the same general legal process while adapting it to the local business practices and IT infrastructure needs. Finally, an evaluation of existing tools for explicit variability management is provided with respect to the requirements identified.

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    SOA and BPM, a Partnership for Successful Organizations

    Get PDF
    In order to stay effective and competitive, companies have to be able to adapt themselves to permanent market requirements, to improve constantly their business process, to act as flexible and proactive economic agents. To achieve these goals, the IT systems within the organization have to be standardized and integrated, in order to provide fast and reliable data access to users both inside and outside the company. A proper system architecture for integrating company’s IT assets is a service oriented one. A service-oriented architecture (SOA) is an IT architectural style that allows integration of the company’s business as linked, repeatable tasks called services. A subject closely related to SOA is Business Process Management (BPM), an approach that aims to improve business processes. The paper also presents some aspects of this topic, as well as the relationship between SOA and BPM. They complement each other and help companies improve their business performance.Information Systems, SOA, Web Services, BPM

    Optimizing the Structure and Scale of Urban Water Infrastructure: Integrating Distributed Systems

    Get PDF
    Large-scale, centralized water infrastructure has provided clean drinking water, wastewater treatment, stormwater management and flood protection for U.S. cities and towns for many decades, protecting public health, safety and environmental quality. To accommodate increasing demands driven by population growth and industrial needs, municipalities and utilities have typically expanded centralized water systems with longer distribution and collection networks. This approach achieves financial and institutional economies of scale and allows for centralized management. It comes with tradeoffs, however, including higher energy demands for longdistance transport; extensive maintenance needs; and disruption of the hydrologic cycle, including the large-scale transfer of freshwater resources to estuarine and saline environments.While smaller-scale distributed water infrastructure has been available for quite some time, it has yet to be widely adopted in urban areas of the United States. However, interest in rethinking how to best meet our water and sanitation needs has been building. Recent technological developments and concerns about sustainability and community resilience have prompted experts to view distributed systems as complementary to centralized infrastructure, and in some situations the preferred alternative.In March 2014, the Johnson Foundation at Wingspread partnered with the Water Environment Federation and the Patel College of Global Sustainability at the University of South Florida to convene a diverse group of experts to examine the potential for distributed water infrastructure systems to be integrated with or substituted for more traditional water infrastructure, with a focus on right-sizing the structure and scale of systems and services to optimize water, energy and sanitation management while achieving long-term sustainability and resilience

    Managing design variety, process variety and engineering change: a case study of two capital good firms

    Get PDF
    Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with
    corecore