45,424 research outputs found

    SDN and NFV for satellite infrastructures

    Get PDF
    The integration of SDN and NFV enablers into the satellite network could prove to be an essential means to save on physical sites, improve the time to bring new services to the market and open new ways to improve network resiliency, availability and efficiency. It can be considered that the above two enablers can play a central role in the integration of satellite to terrestrial technologies by using federated management of the network resources.Peer ReviewedPostprint (author's final draft

    Federated Learning in Big Model Era: Domain-Specific Multimodal Large Models

    Full text link
    Multimodal data, which can comprehensively perceive and recognize the physical world, has become an essential path towards general artificial intelligence. However, multimodal large models trained on public datasets often underperform in specific industrial domains. This paper proposes a multimodal federated learning framework that enables multiple enterprises to utilize private domain data to collaboratively train large models for vertical domains, achieving intelligent services across scenarios. The authors discuss in-depth the strategic transformation of federated learning in terms of intelligence foundation and objectives in the era of big model, as well as the new challenges faced in heterogeneous data, model aggregation, performance and cost trade-off, data privacy, and incentive mechanism. The paper elaborates a case study of leading enterprises contributing multimodal data and expert knowledge to city safety operation management , including distributed deployment and efficient coordination of the federated learning platform, technical innovations on data quality improvement based on large model capabilities and efficient joint fine-tuning approaches. Preliminary experiments show that enterprises can enhance and accumulate intelligent capabilities through multimodal model federated learning, thereby jointly creating an smart city model that provides high-quality intelligent services covering energy infrastructure safety, residential community security, and urban operation management. The established federated learning cooperation ecosystem is expected to further aggregate industry, academia, and research resources, realize large models in multiple vertical domains, and promote the large-scale industrial application of artificial intelligence and cutting-edge research on multimodal federated learning

    The user support programme and the training infrastructure of the EGI Federated Cloud

    Get PDF
    The EGI Federated Cloud is a standards-based, open cloud system as well as its enabling technologies that federates institutional clouds to offer a scalable computing platform for data and/or compute driven applications and services. The EGI Federated Cloud is based on open standards and open source Cloud Management Frameworks and offers to its users IaaS, PaaS and SaaS capabilities and interfaces tuned towards the needs of users in research and education. The federation enables scientific data, workloads, simulations and services to span across multiple administrative locations, allowing researchers and educators to access and exploit the distributed resources as an integrated system. The EGI Federated Cloud collaboration established a user support model and a training infrastructure to raise visibility of this service within European scientific communities with the overarching goal to increase adoption and, ultimately increase the usage of e-infrastructures for the benefit of the whole European Research Area. The paper describes this scalable user support and training infrastructure models. The training infrastructure is built on top of the production sites to reduce costs and increase its sustainability. Appropriate design solutions were implemented to reduce the security risks due to the cohabitation of production and training resources on the same sites. The EGI Federated Cloud educational program foresees different kind of training events from basic tutorials to spread the knowledge of this new infrastructure to events devoted to specific scientific disciplines teaching how to use tools already integrated in the infrastructure with the assistance of experts identified in the EGI community. The main success metric of this educational program is the number of researchers willing to try the Federated Cloud, which are steered into the EGI world by the EGI Federated Cloud Support Team through a formal process that brings them from the initial tests to fully exploit the production resources. © 2015 IEEE

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    London SynEx Demonstrator Site: Impact Assessment Report

    Get PDF
    The key ingredients of the SynEx-UCL software components are: 1. A comprehensive and federated electronic healthcare record that can be used to reference or to store all of the necessary healthcare information acquired from a diverse range of clinical databases and patient-held devices. 2. A directory service component to provide a core persons demographic database to search for and authenticate staff users of the system and to anchor patient identification and connection to their federated healthcare record. 3. A clinical record schema management tool (Object Dictionary Client) that enables clinicians or engineers to define and export the data sets mapping to individual feeder systems. 4. An expansible set of clinical management algorithms that provide prompts to the patient or clinician to assist in the management of patient care. CHIME has built up over a decade of experience within Europe on the requirements and information models that are needed to underpin comprehensive multiprofessional electronic healthcare records. The resulting architecture models have influenced new European standards in this area, and CHIME has designed and built prototype EHCR components based on these models. The demonstrator systems described here utilise a directory service and object-oriented engineering approach, and support the secure, mobile and distributed access to federated healthcare records via web-based services. The design and implementation of these software components has been founded on a thorough analysis of the clinical, technical and ethico-legal requirements for comprehensive EHCR systems, published through previous project deliverables and in future planned papers. The clinical demonstrator site described in this report has provided the solid basis from which to establish "proof of concept" verification of the design approach, and a valuable opportunity to install, test and evaluate the results of the component engineering undertaken during the EC funded project. Inevitably, a number of practical implementation and deployment obstacles have been overcome through this journey, each of those having contributed to the time taken to deliver the components but also to the richness of the end products. UCL is fortunate that the Whittington Hospital, and the department of cardiovascular medicine in particular, is committed to a long-term vision built around this work. That vision, outlined within this report, is shared by the Camden and Islington Health Authority and by many other purchaser and provider organisations in the area, and by a number of industrial parties. They are collectively determined to support the Demonstrator Site as an ongoing project well beyond the life of the EC SynEx Project. This report, although a final report as far as the EC project is concerned, is really a description of the first phase in establishing a centre of healthcare excellence. New EC Fifth Framework project funding has already been approved to enable new and innovative technology solutions to be added to the work already established in north London

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Enabling the Autonomic Management of Federated Identity Providers

    Get PDF
    The autonomic management of federated authorization infrastructures (federations) is seen as a means for improving the monitoring and use of a service provider’s resources. However, federations are comprised of independent management domains with varying scopes of control and data ownership. The focus of this paper is on the autonomic management of federated identity providers by service providers located in other domains, when the identity providers have been diagnosed as the source of abuse. In particular, we describe how an autonomic controller, external to the domain of the identity provider, exercises control over the issuing of privilege attributes. The paper presents a conceptual design and implementation of an effector for an identity provider that is capable of enabling cross-domain autonomic management. The implementation of an effector for a SimpleSAMLphp identity provider is evaluated by demonstrating how an autonomic controller, together with the effector, is capable of responding to malicious abuse
    • …
    corecore