82 research outputs found

    A Decision Support System (DSS) for Breast Cancer Detection Based on Invariant Feature Extraction, Classification, and Retrieval of Masses of Mammographic Images

    Get PDF
    This paper presents an integrated system for the breast cancer detection from mammograms based on automated mass detection, classification, and retrieval with a goal to support decision-making by retrieving and displaying the relevant past cases as well as predicting the images as benign or malignant. It is hypothesized that the proposed diagnostic aid would refresh the radiologist’s mental memory to guide them to a precise diagnosis with concrete visualizations instead of only suggesting a second diagnosis like many other CAD systems. Towards achieving this goal, a Graph-Based Visual Saliency (GBVS) method is used for automatic mass detection, invariant features are extracted based on using Non-Subsampled Contourlet transform (NSCT) and eigenvalues of the Hessian matrix in a histogram of oriented gradients (HOG), and finally classification and retrieval are performed based on using Support Vector Machines (SVM) and Extreme Learning Machines (ELM), and a linear combination-based similarity fusion approach. The image retrieval and classification performances are evaluated and compared in the benchmark Digital Database for Screening Mammography (DDSM) of 2604 cases by using both the precision-recall and classification accuracies. Experimental results demonstrate the effectiveness of the proposed system and show the viability of a real-time clinical application

    Caracterización de Patrones Anormales en Mamografías

    Get PDF
    Abstract. Computer-guided image interpretation is an extensive research area whose main purpose is to provide tools to support decision-making, for which a large number of automatic techniques have been proposed, such as, feature extraction, pattern recognition, image processing, machine learning, among others. In breast cancer, the results obtained at this area, they have led to the development of diagnostic support systems, which have even been approved by the FDA (Federal Drug Administration). However, the use of those systems is not widely extended in clinic scenarios, mainly because their performance is unstable and poorly reproducible. This is due to the high variability of the abnormal patterns associated with this neoplasia. This thesis addresses the main problem associated with the characterization and interpretation of breast masses and architectural distortion, mammographic findings directly related to the presence of breast cancer with higher variability in their form, size and location. This document introduces the design, implementation and evaluation of strategies to characterize abnormal patterns and to improve the mammographic interpretation during the diagnosis process. The herein proposed strategies allow to characterize visual patterns of these lesions and the relationship between them to infer their clinical significance according to BI-RADS (Breast Imaging Reporting and Data System), a radiologic tool used for mammographic evaluation and reporting. The obtained results outperform some obtained by methods reported in the literature both tasks classification and interpretation of masses and architectural distortion, respectively, demonstrating the effectiveness and versatility of the proposed strategies.Resumen. La interpretación de imágenes guiada por computador es una área extensa de investigación cuyo objetivo principal es proporcionar herramientas para el soporte a la toma de decisiones, para lo cual se han usado un gran número de técnicas de extracción de características, reconocimiento de patrones, procesamiento de imágenes, aprendizaje de máquina, entre otras. En el cáncer de mama, los resultados obtenidos en esta área han dado lugar al desarrollo de sistemas de apoyo al diagnóstico que han sido incluso aprobados por la FDA (Federal Drug Administration). Sin embargo, el uso de estos sistemas no es ampliamente extendido, debido principalmente, a que su desempeño resulta inestable y poco reproducible frente a la alta variabilidad de los patrones anormales asociados a esta neoplasia. Esta tesis trata el principal problema asociado a la caracterización y análisis de masas y distorsión de la arquitectura debido a que son hallazgos directamente relacionados con la presencia de cáncer y que usualmente presentan mayor variabilidad en su forma, tamaño y localización, lo que altera los resultados diagnósticos. Este documento introduce el diseño, implementación y evaluación de un conjunto de estrategias para caracterizar patrones anormales relacionados con este tipo de hallazgos para mejorar la interpretación y soportar el diagnóstico mediante la imagen mamaria. Los modelos aquí propuestos permiten caracterizar patrones visuales y la relación entre estos para inferir su significado clínico según el estándar BI-RADS (Breast Imaging Reporting and Data System) usado para la evaluación y reporte mamográfico. Los resultados obtenidos han demostrado mejorar a los resultados obtenidos por los métodos reportados en la literatura en tareas como clasificación e interpretación de masas y distorsión arquitectural, demostrando la efectividad y versatilidad de las estrategia propuestas.Doctorad

    Breast Cancer : automatic detection and risk analysis through machine learning algorithms, using mammograms

    Get PDF
    Tese de Mestrado Integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), 2021, Universidade de Lisboa, Faculdade de CiênciasCom 2.3 milhões de casos diagnosticados em todo o Mundo, durante o ano de 2020, o cancro da mama tornou-se aquele com maior incidência, nesse mesmo ano, considerando ambos os sexos. Anualmente, em Portugal, são diagnosticados aproximadamente sete mil (7000) novos casos de cancro da mama, com mil oitocentas (1800) mulheres a morrerem, todos os anos, devido a esta doença - indicando uma taxa de mortalidade de aproximadamente 5 mulheres por dia. A maior parte dos diagnósticos de cancro da mama ocorrem ao nível de programas de rastreio, que utilizam mamografia. Esta técnica de imagem apresenta alguns problemas: o facto de ser uma imagem a duas dimensões leva a que haja sobreposição de tecidos, o que pode mascarar a presença de tumores; e a fraca sensibilidade a mamas mais densas, sendo estas caraterísticas de mulheres com risco de cancro da mama mais elevado. Como estes dois problemas dificultam a leitura das mamografias, grande parte deste trabalhou focou-se na verificação do desempenho de métodos computacionais na tarefa de classificar mamografias em duas classes: cancro e não-cancro. No que diz respeito à classe “não cancro” (N = 159), esta foi constituída por mamografias saudáveis (N=84), e por mamografias que continham lesões benignas (N=75). Já a classe “cancro” continha apenas mamografias com lesões malignas (N = 73). A discriminação entre estas duas classes foi feita com recurso a algoritmos de aprendizagem automática. Múltiplos classificadores foram otimizados e treinados (Ntreino=162, Nteste = 70), recorrendo a um conjunto de características previamente selecionado, que descreve a textura de toda a mamografia, em vez de apenas uma única Região de Interesse. Estas características de textura baseiam-se na procura de padrões: sequências de pixéis com a mesma intensidade, ou pares específicos de pixéis. O classificador que apresentou uma performance mais elevada foi um dos Support Vector Machine (SVM) treinados – AUC= 0.875, o que indica um desempenho entre o bom e o excelente. A Percent Mammographic Density (%PD) é um importante fator de risco no que diz respeito ao desenvolvimento da doença, pelo que foi estudado se a sua adição ao set de features selecionado resultaria numa melhor performance dos classificadores. O classificador, treinado e otimizado utilizando as features de textura e os cálculos de %PD, com maior capacidade discriminativa foi um Linear Discriminant Analysis (LDA) – AUC = 0.875. Uma vez que a performance é igual à obtida com o classificador que utiliza apenas features de textura, conclui-se que a %PD parece não contribuir com informação relevante. Tal pode ocorrer porque as próprias características de textura já têm informação sobre a densidade da mama. De forma a estudar-se de que modo o desempenho destes métodos computacionais pode ser afetado por piores condições de aquisição de imagem, foi simulado ruído gaussiano, e adicionado ao set de imagens utilizado para testagem. Este ruído, adicionado a cada imagem com quatro magnitudes diferentes, resultou numa AUC de 0.765 para o valor mais baixo de ruído, e numa AUC de 0.5 para o valor de ruído mais elevado. Tais resultados indicam que, para níveis de ruído mais baixo, o classificador consegue, ainda assim, manter uma performance satisfatória – o que deixa de se verificar para valores mais elevados de ruído. Estudou-se, também, se a aplicação de técnicas de filtragem – com um filtro mediana – poderia ajudar a recuperar informação perdida aquando da adição de ruído. A aplicação do filtro a todas as imagens ruidosas resultou numa AUC de 0.754 para o valor mais elevado de ruído, atingindo assim um desempenho similar ao set de imagens menos ruidosas, antes do processo de filtragem (AUC=0.765). Este resultados parecem indicar que, na presença de más condições de aquisição, a aplicação de um filtro mediana pode ajudar a recuperar informação, conduzindo assim a um melhor desempenho dos métodos computacionais. No entanto, esta mesma conclusão parece não se verificar para valores de ruído mais baixo onde a AUC após filtragem acaba por ser mais reduzida. Tal resultado poderá indicar que, em situações onde o nível de ruído é mais baixo, a técnica de filtragem não só remove o ruído, como acaba também por, ela própria, remover informação ao nível da textura da imagem. De modo a verificar se mamas com diferentes densidades afetavam a performance do classificador, foram criados três sets de teste diferentes, cada um deles contendo imagens de mamas com a mesma densidade (1, 2, e 3). Os resultados obtidos indicam-nos que um aumento na densidade das mamas analisadas não resulta, necessariamente, numa diminuição da capacidade em discriminar as classes definidas (AUC = 0.864, AUC = 0.927, AUC= 0.905; para as classes 1, 2, e 3 respetivamente). A utilização da imagem integral para analisar de textura, e a utilização de imagens de datasets diferentes (com dimensões de imagem diferentes), poderiam introduzir um viés na classificação, especialmente no que diz respeito às diferentes áreas da mama. Para verificar isso mesmo, utilizando o coeficiente de correlação de Pearson, ρ = 0.3, verificou-se que a área da mama (e a percentagem de ocupação) tem uma fraca correlação com a classificação dada a cada imagem. A construção do classificador, para além de servir de base a todos os testes apresentados, serviu também o propósito de criar uma interface interativa, passível de ser utilizada como ficheiro executável, sem necessidade de instalação de nenhum software. Esta aplicação permite que o utilizador carregue imagens de mamografia, exclua background desnecessário para a análise da imagem, extraia features, teste o classificador construído e dê como output, no ecrã, a classe correspondente à imagem carregada. A análise de risco de desenvolvimento da doença foi conseguida através da análise visual da variação dos valores das features de textura ao longo dos anos para um pequeno set (N=11) de mulheres. Esta mesma análise permitiu descortinar aquilo que parece ser uma tendência apresentada apenas por mulheres doentes, na mamografia imediatamente anterior ao diagnóstico da doença. Todos os resultados obtidos são descritos profundamente ao longo deste documento, onde se faz, também, uma referência pormenorizada a todos os métodos utilizados para os obter. O resultado da classificação feita apenas com as features de textura encontra-se dentro dos valores referenciados no estado-da-arte, indicando que o uso de features de textura, por si só, demonstrou ser profícuo. Para além disso, tal resultado serve também de indicação que o recurso a toda a imagem de mamografia, sem o trabalho árduo de definição de uma Região de Interesse, poderá ser utilizado com relativa segurança. Os resultados provenientes da análise do efeito da densidade e da área da mama, dão também confiança no uso do classificador. A interface interativa que resultou desta primeira fase de trabalho tem, potencialmente, um diferenciado conjunto de aplicações: no campo médico, poderá servir de auxiliar de diagnóstico ao médico; já no campo da análise computacional, poderá servir para a definição da ground truth de potenciais datasets que não tenham legendas definidas. No que diz respeito à análise de risco, a utilização de um dataset de dimensões reduzidas permitiu, ainda assim, compreender que existem tendências nas variações das features ao longo dos anos, que são especificas de mulheres que desenvolveram a doença. Os resultados obtidos servem, então, de indicação que a continuação desta linha de trabalho, procurando avaliar/predizer o risco, deverá ser seguida, com recurso não só a datasets mais completos, como também a métodos computacionais de aprendizagem automática.Two million and three hundred thousand Breast Cancer (BC) cases were diagnosed in 2020, making it the type of cancer with the highest incidence that year, considering both sexes. Breast Cancer diagnosis usually occurs during screening programs using mammography, which has some downsides: the masking effect due to its 2-D nature, and its poor sensitivity concerning dense breasts. Since these issues result in difficulties reading mammograms, the main part of this work aimed to verify how a computer vision method would perform in classifying mammograms into two classes: cancer and non-cancer. The ‘non-cancer group’ (N=159) was composed by images with healthy tissue (N=84) and images with benign lesions (N=75), while the cancer group (N=73) contained malignant lesions. To achieve this, multiple classifiers were optimized and trained (Ntrain = 162, Ntest = 70) with a previously selected ideal sub-set of features that describe the texture of the entire image, instead of just one small Region of Interest (ROI). The classifier with the best performance was Support Vector Machine (SVM), (AUC = 0.875), which indicates a good-to-excellent capability discriminating the two defined groups. To assess if Percent Mammographic Density (%PD), an important risk factor, added important information, a new classifier was optimized and trained using the selected sub-set of texture features plus the %PD calculation. The classifier with the best performance was a Linear Discriminant Analysis (LDA), (AUC=0.875), which seems to indicate, once it achieves the same performance as the classifier using only texture features, that there is no relevant information added from %PD calculations. This happens because texture already includes information on breast density. To understand how the classifier would perform in worst image acquisition conditions, gaussian noise was added to the test images (N=70), with four different magnitudes (AUC= 0.765 for the lowest noise value vs. AUC ≈ 0.5 for the highest). A median filter was applied to the noised images towards evaluating if information could be recovered. For the highest noise value, after filtering, the AUC was very close to the one obtained for the lowest noise value before filtering (0.754 vs 0.765), which indicates information recovery. The effect of density in classifier performance was evaluated by constructing three different test sets, each containing images from a density class (1,2,3). It was seen that an increase in density did not necessarily resulted in a decrease in performance, which indicates that the classifier is robust to density variation (AUC = 0.864, AUC= 0.927, AUC= 0.905 ; for class 1, 2, and 3 respectively). Since the entire image is being analyzed, and images come from different datasets, it was verified if breast area was adding bias to classification. Pearson correlation coefficient provided an output of ρ = 0.22, showing that there is a weak correlation between these two variables. Finally, breast cancer risk was assessed by visual texture feature analysis through the years, for a small set of women (N=11). This visual analysis allowed to unveil what seems to be a pattern amongst women who developed the disease, in the mammogram immediately before diagnosis. The details of each phase, as well as the associated final results are deeply described throughout this document. The work done in the first classification task resulted in a state-of-the-art performance, which may serve as foundation for new research in the area, without the laborious work of ROI definition. Besides that, the use of texture features alone proved to be fruitful. Results concerning risk may serve as basis for future work in the area, with larger datasets and the incorporation of Computer Vision methods

    A unified learning framework for content based medical image retrieval using a statistical model

    Get PDF
    AbstractThis paper presents a unified learning framework for heterogeneous medical image retrieval based on a Full Range Autoregressive Model (FRAR) with the Bayesian approach (BA). Using the unified framework, the color autocorrelogram, edge orientation autocorrelogram (EOAC) and micro-texture information of medical images are extracted. The EOAC is constructed in HSV color space, to circumvent the loss of edges due to spectral and chromatic variations. The proposed system employed adaptive binary tree based support vector machine (ABTSVM) for efficient and fast classification of medical images in feature vector space. The Manhattan distance measure of order one is used in the proposed system to perform a similarity measure in the classified and indexed feature vector space. The precision and recall (PR) method is used as a measure of performance in the proposed system. Short-term based relevance feedback (RF) mechanism is also adopted to reduce the semantic gap. The Experimental results reveal that the retrieval performance of the proposed system for heterogeneous medical image database is better than the existing systems at low computational and storage cost

    Towards Generalist Biomedical AI

    Full text link
    Medicine is inherently multimodal, with rich data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence (AI) systems that flexibly encode, integrate, and interpret this data at scale can potentially enable impactful applications ranging from scientific discovery to care delivery. To enable the development of these models, we first curate MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system. Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. Med-PaLM M reaches performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. We also report examples of zero-shot generalization to novel medical concepts and tasks, positive transfer learning across tasks, and emergent zero-shot medical reasoning. To further probe the capabilities and limitations of Med-PaLM M, we conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales. In a side-by-side ranking on 246 retrospective chest X-rays, clinicians express a pairwise preference for Med-PaLM M reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility. While considerable work is needed to validate these models in real-world use cases, our results represent a milestone towards the development of generalist biomedical AI systems
    corecore