789 research outputs found

    Evaluation of directional vacuum-assisted breast biopsy: Report for the National Breast Cancer Centre final report, CHERE Project Report No 21

    Get PDF
    This project was commissioned by the National Breast Cancer Centre (NBCC). The objectives of the project, as set out in the call for expressions of interest, were to determine: 1. The costs associated with the introduction and use of directional vacuum-assisted breast biopsy(DVA breast biopsy) in Australia; and 2. Whether directional vacuum-assisted breast biopsy used for diagnostic purposes is cost-effectivein Australia when compared to core biopsy. The motivation for commissioning the project was an assessment of directional vacuum-assisted breast biopsy conducted by the Medical Services Advisory Committee (MSAC) which concluded that the procedure is safe and more effective than core biopsy. Although a cost-effectiveness analysis was not conducted as part of the MSAC study, MSAC recommended that the costs associated with the procedure be investigated and that, pending a review of costs, the procedure receive interim Medicare funding at a higher level than was previously available. For the project reported here, data was required to be collected from both public and private sectors on the cost of introducing and using DVA breast biopsy and a cost-effectiveness analysis (CEA) conducted on the introduction and use of DVA breast biopsy with and without a prone table. The research question for the CEA was What is the impact on costs and number of open biopsies performed of using DVA breast biopsy compared to core biopsy for micro-calcification lesions? It is important to note that this question specifies both the outcome the CEA (change in the number of core biopsies performed) and that the investigation was to be confined to micro-calcification lesions only. An expert multidisciplinary working group was assembled to oversee the project. Following collection of data an interim report was produced for the working group. As DVABB is a relatively new technology in Australia the interim report indicated that the current number of sites performing DVABB and the level of experience of users was insufficient to provide meaningful data to achieve the project aims. On the advice of the working group it was agreed to suspend the project at this juncture. The NBCC will consider repeating the survey in the future.Breast cancer, diagnostics, breast biopsy, Australia

    MammoApplet: an interactive Java applet tool for manual annotation in medical imaging

    Get PDF
    Web-based applications in computational medicine have become increasingly important during the last years. The rapid growth of the World Wide Web supposes a new paradigm in the telemedicine and eHealth areas in order to assist and enhance the prevention, diagnosis and treatment of patients. Furthermore, training of radiologists and management of medical databases are also becoming increasingly important issues in the field. In this paper, we present MammoApplet , an interactive Java applet interface designed as a web-based tool. It aims to facilitate the diagnosis of new mammographic cases by providing a set of image processing tools that allow a better visualization of the images, and a set of drawing tools, used to annotate the suspicious regions. Each annotation allows including the attributes considered by the experts when issuing the final diagnosis. The overall set of overlays is stored in a database as XML files associated with the original images. The final goal is to obtain a database of already diagnosed cases for training and enhancing the performance of novice radiologistsPeer ReviewedPostprint (author's final draft

    A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms

    Full text link
    Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extrcated from the shape, margin, and density of each mass, together with the mass size and the patient's age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database of screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories

    A Decision Support System (DSS) for Breast Cancer Detection Based on Invariant Feature Extraction, Classification, and Retrieval of Masses of Mammographic Images

    Get PDF
    This paper presents an integrated system for the breast cancer detection from mammograms based on automated mass detection, classification, and retrieval with a goal to support decision-making by retrieving and displaying the relevant past cases as well as predicting the images as benign or malignant. It is hypothesized that the proposed diagnostic aid would refresh the radiologist’s mental memory to guide them to a precise diagnosis with concrete visualizations instead of only suggesting a second diagnosis like many other CAD systems. Towards achieving this goal, a Graph-Based Visual Saliency (GBVS) method is used for automatic mass detection, invariant features are extracted based on using Non-Subsampled Contourlet transform (NSCT) and eigenvalues of the Hessian matrix in a histogram of oriented gradients (HOG), and finally classification and retrieval are performed based on using Support Vector Machines (SVM) and Extreme Learning Machines (ELM), and a linear combination-based similarity fusion approach. The image retrieval and classification performances are evaluated and compared in the benchmark Digital Database for Screening Mammography (DDSM) of 2604 cases by using both the precision-recall and classification accuracies. Experimental results demonstrate the effectiveness of the proposed system and show the viability of a real-time clinical application

    An Unsupervised Method for Suspicious Regions Detection in Mammogram Images

    Get PDF
    Over the past years many researchers proposed biomedical imaging methods for computer-aided detection and classification of suspicious regions in mammograms. Mammogram interpretation is performed by radiologists by visual inspection. The large volume of mammograms to be analyzed makes such readings labour intensive and often inaccurate. For this purpose, in this paper we propose a new unsupervised method to automatically detect suspicious regions in mammogram images. The method consists mainly of two steps: preprocessing; feature extraction and selection. Preprocessing steps allow to separate background region from the breast profile region. In greater detail, gray levels mapping transform and histogram specifications are used to enhance the visual representation of mammogram details. Then, local keypoints and descriptors such as SURF have been extracted in breast profile region. The extracted keypoints are filtered by proper parameters tuning to detect suspicious regions. The results, in terms of sensitivity and confidence interval are very encouraging

    Tumor Prediction in Mammogram using Neural Network

    Get PDF
    Detecting micro calcifications - early breast cancer indicators 2013; is visually tough while recognizing malignant tumors is a highly complicated issue. Digital mammography ensures early breast cancer detection through digital mammograms locating suspicious areas with benign/- malignant micro calcifications. Early detection is vital in treatment and survival of breast cancer as there are no sure ways to prevent it. This paper presents a method of tumor prediction based on extracting features from mammogram using Gabor filter with Discrete cosine transform and classify the features using Neural Network
    • …
    corecore