1,628 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Security Evaluation of Cyber-Physical Systems in Society- Critical Internet of Things

    Get PDF
    In this paper, we present evaluation of security awareness of developers and users of cyber-physical systems. Our study includes interviews, workshops, surveys and one practical evaluation. We conducted 15 interviews and conducted survey with 55 respondents coming primarily from industry. Furthermore, we performed practical evaluation of current state of practice for a society-critical application, a commercial vehicle, and reconfirmed our findings discussing an attack vector for an off-line societycritical facility. More work is necessary to increase usage of security strategies, available methods, processes and standards. The security information, currently often insufficient, should be provided in the user manuals of products and services to protect system users. We confirmed it lately when we conducted an additional survey of users, with users feeling as left out in their quest for own security and privacy. Finally, hardware-related security questions begin to come up on the agenda, with a general increase of interest and awareness of hardware contribution to the overall cyber-physical security. At the end of this paper we discuss possible countermeasures for dealing with threats in infrastructures, highlighting the role of authorities in this quest

    xLED: Covert Data Exfiltration from Air-Gapped Networks via Router LEDs

    Full text link
    In this paper we show how attackers can covertly leak data (e.g., encryption keys, passwords and files) from highly secure or air-gapped networks via the row of status LEDs that exists in networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device ('side-channel'), intentionally controlling the status LEDs to carry any type of data ('covert-channel') has never studied before. A malicious code is executed on the LAN switch or router, allowing full control of the status LEDs. Sensitive data can be encoded and modulated over the blinking of the LEDs. The generated signals can then be recorded by various types of remote cameras and optical sensors. We provide the technical background on the internal architecture of switches and routers (at both the hardware and software level) which enables this type of attack. We also present amplitude and frequency based modulation and encoding schemas, along with a simple transmission protocol. We implement a prototype of an exfiltration malware and discuss its design and implementation. We evaluate this method with a few routers and different types of LEDs. In addition, we tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and also discuss different detection and prevention countermeasures. Our experiment shows that sensitive data can be covertly leaked via the status LEDs of switches and routers at a bit rates of 10 bit/sec to more than 1Kbit/sec per LED
    • …
    corecore