271 research outputs found

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead

    Computing Adaptive Feature Weights with PSO to Improve Android Malware Detection

    Get PDF
    © 2017 Yanping Xu et al. Android malware detection is a complex and crucial issue. In this paper, we propose a malware detection model using a support vector machine (SVM) method based on feature weights that are computed by information gain (IG) and particle swarm optimization (PSO) algorithms. The IG weights are evaluated based on the relevance between features and class labels, and the PSO weights are adaptively calculated to result in the best fitness (the performance of the SVM classification model). Moreover, to overcome the defects of basic PSO, we propose a new adaptive inertia weight method called fitness-based and chaotic adaptive inertia weight-PSO (FCAIW-PSO) that improves on basic PSO and is based on the fitness and a chaotic term. The goal is to assign suitable weights to the features to ensure the best Android malware detection performance. The results of experiments indicate that the IG weights and PSO weights both improve the performance of SVM and that the performance of the PSO weights is better than that of the IG weights

    Malware Detection Approaches based on Operational Codes (OpCodes) of Executable Programs: A Review

    Get PDF
    A malicious software, or Malware for a short, poses a threat to computer systems, which need to be analyzed, detected, and eliminated. Generally, malware is analyzed in two ways: dynamic malware analysis and static malware analysis. The former collects features dataset during running of the malware, and involves malware APIs, registry activities, file activities, process activities, and network activities based features. The latter collects features dataset prior and without running the malware, and involves Operational Codes (OpCodes) and text based (Bytecodes) features. However, several previous researchers addressed and reviewed malware detection approaches based on various aspects, but none of them addressed and reviewed the approaches merely based on malware OpCodes. Therefore, this paper aims to review Malware Detection Approaches based on OpCodes. The review explores, demonstrates, and compares the existing approaches for detecting malware according to their OpCodes only, and finally presents a comprehensive comparable envisage about them

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    A Cybersecurity review of Healthcare Industry

    Get PDF
    Antecedentes La ciberseguridad no es un concepto nuevo de nuestros días. Desde los años 60 la ciberseguridad ha sido un ámbito de discusión e investigación. Aunque los mecanismos de defensa en materia de seguridad han evolucionado, las capacidades del atacante también se han incrementado de igual o mayor manera. Prueba de este hecho es la precaria situación en materia de ciberseguridad de muchas empresas, que ha llevado a un incremento de ataques de ransomware y el establecimiento de grandes organizaciones criminales dedicadas al cibercrimen. Esta situación, evidencia la necesidad de avances e inversión en ciberseguridad en multitud de sectores, siendo especialmente relevante en la protección de infraestructuras críticas. Se conoce como infraestructuras críticas aquellas infraestructuras estratégicas cuyo funcionamiento es indispensable y no permite soluciones alternativas, por lo que su perturbación o destrucción tendría un grave impacto sobre los servicios esenciales. Dentro de esta categorización se encuentran los servicios e infraestructuras sanitarias. Estas infraestructuras ofrecen un servicio, cuya interrupción conlleva graves consecuencias, como la pérdida de vidas humanas. Un ciberataque puede afectar a estos servicios sanitarios, llevando a su paralización total o parcial, como se ha visto en recientes incidentes, llevando incluso a la pérdida de vidas humanas. Además, este tipo de servicios contienen multitud de información personal de carácter altamente sensible. Los datos médicos son un tipo de datos con alto valor en mercados ilegales, y por tanto objetivos de ataques centrados en su robo. Por otra parte, se debe mencionar, que al igual que otros sectores, actualmente los servicios sanitarios se encuentran en un proceso de digitalización. Esta evolución, ha obviado la ciberseguridad en la mayoría de sus desarrollos, contribuyendo al crecimiento y gravedad de los ataques previamente mencionados. - Metodología e investigación El trabajo presentado en esta tesis sigue claramente un método experimental y deductivo. Está investigación se ha centrado en evaluar el estado de la ciberseguridad en infraestructuras sanitarias y proponer mejoras y mecanismos de detección de ciberataques. Las tres publicaciones científicas incluidas en esta tesis buscan dar soluciones y evaluar problemas actuales en el ámbito de las infraestructuras y sistemas sanitarios. La primera publicación, 'Mobile malware detection using machine learning techniques', se centró en desarrollar nuevas técnicas de detección de amenazas basadas en el uso de tecnologías de inteligencia artificial y ‘machine learning’. Esta investigación fue capaz de desarrollar un método de detección de aplicaciones potencialmente no deseadas y maliciosas en entornos móviles de tipo Android. Además, tanto en el diseño y creación se tuvo en cuenta las necesidades específicas de los entornos sanitarios. Buscando ofrecer una implantación sencilla y viable de acorde las necesidades de estos centros, obteniéndose resultados satisfactorios. La segunda publicación, 'Interconnection Between Darknets', buscaba identificar y detectar robos y venta de datos médicos en darknets. El desarrollo de esta investigación conllevó el descubrimiento y prueba de la interconexión entre distintas darknets. La búsqueda y el análisis de información en este tipo de redes permitió demostrar como distintas redes comparten información y referencias entre ellas. El análisis de una darknet implica la necesidad de analizar otras, para obtener una información más completa de la primera. Finalmente, la última publicación, 'Security and privacy issues of data-over-sound technologies used in IoT healthcare devices' buscó investigar y evaluar la seguridad de dispositivos médicos IoT ('Internet of Things'). Para desarrollar esta investigación se adquirió un dispositivo médico, un electrocardiógrafo portable, actualmente en uso por diversos hospitales. Las pruebas realizadas sobre este dispositivo fueron capaces de descubrir múltiples fallos de ciberseguridad. Estos descubrimientos evidenciaron la carencia de certificaciones y revisiones obligatorias en materia ciberseguridad en productos sanitarios, comercializados actualmente. Desgraciadamente la falta de presupuesto dedicado a investigación no permitió la adquisición de varios dispositivos médicos, para su posterior evaluación en ciberseguridad. - Conclusiones La realización de los trabajos e investigaciones previamente mencionadas permitió obtener las siguientes conclusiones. Partiendo de la necesidad en mecanismos de ciberseguridad de las infraestructuras sanitarias, se debe tener en cuenta su particularidad diseño y funcionamiento. Las pruebas y mecanismos de ciberseguridad diseñados han de ser aplicables en entornos reales. Desgraciadamente actualmente en las infraestructuras sanitarias hay sistemas tecnológicos imposibles de actualizar o modificar. Multitud de máquinas de tratamiento y diagnostico cuentan con software y sistemas operativos propietarios a los cuales los administradores y empleados no tienen acceso. Teniendo en cuenta esta situación, se deben desarrollar medidas que permitan su aplicación en este ecosistema y que en la medida de los posible puedan reducir y paliar el riesgo ofrecido por estos sistemas. Esta conclusión viene ligada a la falta de seguridad en dispositivos médicos. La mayoría de los dispositivos médicos no han seguido un proceso de diseño seguro y no han sido sometidos a pruebas de seguridad por parte de los fabricantes, al suponer esto un coste directo en el desarrollo del producto. La única solución en este aspecto es la aplicación de una legislación que fuerce a los fabricantes a cumplir estándares de seguridad. Y aunque actualmente se ha avanzado en este aspecto regulatorio, se tardaran años o décadas en sustituir los dispositivos inseguros. La imposibilidad de actualizar, o fallos relacionados con el hardware de los productos, hacen imposible la solución de todos los fallos de seguridad que se descubran. Abocando al reemplazo del dispositivo, cuando exista una alternativa satisfactoria en materia de ciberseguridad. Por esta razón es necesario diseñar nuevos mecanismos de ciberseguridad que puedan ser aplicados actualmente y puedan mitigar estos riesgos en este periodo de transición. Finalmente, en materia de robo de datos. Aunque las investigaciones preliminares realizadas en esta tesis no consiguieron realizar ningún descubrimiento significativo en el robo y venta de datos. Actualmente las darknets, en concreto la red Tor, se han convertido un punto clave en el modelo de Ransomware as a Business (RaaB), al ofrecer sitios webs de extorsión y contacto con estos grupos

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Security in Computer and Information Sciences

    Get PDF
    This open access book constitutes the thoroughly refereed proceedings of the Second International Symposium on Computer and Information Sciences, EuroCybersec 2021, held in Nice, France, in October 2021. The 9 papers presented together with 1 invited paper were carefully reviewed and selected from 21 submissions. The papers focus on topics of security of distributed interconnected systems, software systems, Internet of Things, health informatics systems, energy systems, digital cities, digital economy, mobile networks, and the underlying physical and network infrastructures. This is an open access book

    Security and Privacy Threats on Mobile Devices through Side-Channels Analysis

    Get PDF
    In recent years, mobile devices (such as smartphones and tablets) have become essential tools in everyday life for billions of people all around the world. Users continuously carry such devices with them and use them for daily communication activities and social network interactions. Hence, such devices contain a huge amount of private and sensitive information. For this reason, mobile devices become popular targets of attacks. In most attack settings, the adversary aims to take local or remote control of a device to access user sensitive information. However, such violations are not easy to carry out since they need to leverage a vulnerability of the system or a careless user (i.e., install a malware app from an unreliable source). A different approach that does not have these shortcomings is the side-channels analysis. In fact, side-channels are physical phenomenon that can be measured from both inside or outside a device. They are mostly due to the user interaction with a mobile device, but also to the context in which the device is used, hence they can reveal sensitive user information such as identity and habits, environment, and operating system itself. Hence, this approach consists of inferring private information that is leaked by a mobile device through a side-channel. Besides, side-channel information is also extremely valuable to enforce security mechanisms such as user authentication, intrusion and information leaks detection. This dissertation investigates novel security and privacy challenges on the analysis of side-channels of mobile devices. This thesis is composed of three parts, each focused on a different side-channel: (i) the usage of network traffic analysis to infer user private information; (ii) the energy consumption of mobile devices during battery recharge as a way to identify a user and as a covert channel to exfiltrate data; and (iii) the possible security application of data collected from built-in sensors in mobile devices to authenticate the user and to evade sandbox detection by malware. In the first part of this dissertation, we consider an adversary who is able to eavesdrop the network traffic of the device on the network side (e.g., controlling a WiFi access point). The fact that the network traffic is often encrypted makes the attack even more challenging. Our work proves that it is possible to leverage machine learning techniques to identify user activity and apps installed on mobile devices analyzing the encrypted network traffic they produce. Such insights are becoming a very attractive data gathering technique for adversaries, network administrators, investigators and marketing agencies. In the second part of this thesis, we investigate the analysis of electric energy consumption. In this case, an adversary is able to measure with a power monitor the amount of energy supplied to a mobile device. In fact, we observed that the usage of mobile device resources (e.g., CPU, network capabilities) directly impacts the amount of energy retrieved from the supplier, i.e., USB port for smartphones, wall-socket for laptops. Leveraging energy traces, we are able to recognize a specific laptop user among a group and detect intruders (i.e., user not belonging to the group). Moreover, we show the feasibility of a covert channel to exfiltrate user data which relies on temporized energy consumption bursts. In the last part of this dissertation, we present a side-channel that can be measured within the mobile device itself. Such channel consists of data collected from the sensors a mobile device is equipped with (e.g., accelerometer, gyroscope). First, we present DELTA, a novel tool that collects data from such sensors, and logs user and operating system events. Then, we develop MIRAGE, a framework that relies on sensors data to enhance sandboxes against malware analysis evasion
    corecore