168 research outputs found

    Anomaly Detection in Sequential Data: A Deep Learning-Based Approach

    Get PDF
    Anomaly Detection has been researched in various domains with several applications in intrusion detection, fraud detection, system health management, and bio-informatics. Conventional anomaly detection methods analyze each data instance independently (univariate or multivariate) and ignore the sequential characteristics of the data. Anomalies in the data can be detected by grouping the individual data instances into sequential data and hence conventional way of analyzing independent data instances cannot detect anomalies. Currently: (1) Deep learning-based algorithms are widely used for anomaly detection purposes. However, significant computational overhead time is incurred during the training process due to static constant batch size and learning rate parameters for each epoch, (2) the threshold to decide whether an event is normal or malicious is often set as static. This can drastically increase the false alarm rate if the threshold is set low or decrease the True Alarm rate if it is set to a remarkably high value, (3) Real-life data is messy. It is impossible to learn the data features by training just one algorithm. Therefore, several one-class-based algorithms need to be trained. The final output is the ensemble of the output from all the algorithms. The prediction accuracy can be increased by giving a proper weight to each algorithm\u27s output. By extending the state-of-the-art techniques in learning-based algorithms, this dissertation provides the following solutions: (i) To address (1), we propose a hybrid, dynamic batch size and learning rate tuning algorithm that reduces the overall training time of the neural network. (ii) As a solution for (2), we present an adaptive thresholding algorithm that reduces high false alarm rates. (iii) To overcome (3), we propose a multilevel hybrid ensemble anomaly detection framework that increases the anomaly detection rate of the high dimensional dataset

    Dynamic Analysis of Executables to Detect and Characterize Malware

    Full text link
    It is needed to ensure the integrity of systems that process sensitive information and control many aspects of everyday life. We examine the use of machine learning algorithms to detect malware using the system calls generated by executables-alleviating attempts at obfuscation as the behavior is monitored rather than the bytes of an executable. We examine several machine learning techniques for detecting malware including random forests, deep learning techniques, and liquid state machines. The experiments examine the effects of concept drift on each algorithm to understand how well the algorithms generalize to novel malware samples by testing them on data that was collected after the training data. The results suggest that each of the examined machine learning algorithms is a viable solution to detect malware-achieving between 90% and 95% class-averaged accuracy (CAA). In real-world scenarios, the performance evaluation on an operational network may not match the performance achieved in training. Namely, the CAA may be about the same, but the values for precision and recall over the malware can change significantly. We structure experiments to highlight these caveats and offer insights into expected performance in operational environments. In addition, we use the induced models to gain a better understanding about what differentiates the malware samples from the goodware, which can further be used as a forensics tool to understand what the malware (or goodware) was doing to provide directions for investigation and remediation.Comment: 9 pages, 6 Tables, 4 Figure

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    Analyzing CNN Based Behavioural Malware Detection Techniques on Cloud IaaS

    Full text link
    Cloud Infrastructure as a Service (IaaS) is vulnerable to malware due to its exposure to external adversaries, making it a lucrative attack vector for malicious actors. A datacenter infected with malware can cause data loss and/or major disruptions to service for its users. This paper analyzes and compares various Convolutional Neural Networks (CNNs) for online detection of malware in cloud IaaS. The detection is performed based on behavioural data using process level performance metrics including cpu usage, memory usage, disk usage etc. We have used the state of the art DenseNets and ResNets in effectively detecting malware in online cloud system. CNN are designed to extract features from data gathered from a live malware running on a real cloud environment. Experiments are performed on OpenStack (a cloud IaaS software) testbed designed to replicate a typical 3-tier web architecture. Comparative analysis is performed for different metrics for different CNN models used in this research

    Malware Detection in Cloud Computing Infrastructures

    Get PDF
    Cloud services are prominent within the private, public and commercial domains. Many of these services are expected to be always on and have a critical nature; therefore, security and resilience are increasingly important aspects. In order to remain resilient, a cloud needs to possess the ability to react not only to known threats, but also to new challenges that target cloud infrastructures. In this paper we introduce and discuss an online cloud anomaly detection approach, comprising dedicated detection components of our cloud resilience architecture. More specifically, we exhibit the applicability of novelty detection under the one-class support Vector Machine (SVM) formulation at the hypervisor level, through the utilisation of features gathered at the system and network levels of a cloud node. We demonstrate that our scheme can reach a high detection accuracy of over 90% whilst detecting various types of malware and DoS attacks. Furthermore, we evaluate the merits of considering not only system-level data, but also network-level data depending on the attack type. Finally, the paper shows that our approach to detection using dedicated monitoring components per VM is particularly applicable to cloud scenarios and leads to a flexible detection system capable of detecting new malware strains with no prior knowledge of their functionality or their underlying instructions. Index Terms—Security, resilience, invasive software, multi-agent systems, network-level security and protection

    TKRD : trusted kernel rootkit detection for cybersecurity of VMs based on machine learning and memory forensic analysis

    Get PDF
    The promotion of cloud computing makes the virtual machine (VM) increasingly a target of malware attacks in cybersecurity such as those by kernel rootkits. Memory forensic, which observes the malicious tracks from the memory aspect, is a useful way for malware detection. In this paper, we propose a novel TKRD method to automatically detect kernel rootkits in VMs from private cloud, by combining VM memory forensic analysis with bio-inspired machine learning technology. Malicious features are extracted from the memory dumps of the VM through memory forensic analysis method. Based on these features, various machine learning classifiers are trained including Decision tree, Rule based classifiers, Bayesian and Support vector machines (SVM). The experiment results show that the Random Forest classifier has the best performance which can effectively detect unknown kernel rootkits with an Accuracy of 0.986 and an AUC value (the area under the receiver operating characteristic curve) of 0.998

    Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph

    Get PDF
    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort, and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that influence-based graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201

    Intelligent OS X malware threat detection with code inspection

    Get PDF
    With the increasing market share of Mac OS X operating system, there is a corresponding increase in the number of malicious programs (malware) designed to exploit vulnerabilities on Mac OS X platforms. However, existing manual and heuristic OS X malware detection techniques are not capable of coping with such a high rate of malware. While machine learning techniques offer promising results in automated detection of Windows and Android malware, there have been limited efforts in extending them to OS X malware detection. In this paper, we propose a supervised machine learning model. The model applies kernel base Support Vector Machine (SVM) and a novel weighting measure based on application library calls to detect OS X malware. For training and evaluating the model, a dataset with a combination of 152 malware and 450 benign were is created. Using common supervised Machine Learning algorithm on the dataset, we obtain over 91% detection accuracy with 3.9% false alarm rate. We also utilize Synthetic Minority Over-sampling Technique (SMOTE) to create three synthetic datasets with different distributions based on the refined version of collected dataset to investigate impact of different sample sizes on accuracy of malware detection. Using SMOTE datasets we could achieve over 96% detection accuracy and false alarm of less than 4%. All malware classification experiments are tested using cross validation technique. Our results reflect that increasing sample size in synthetic datasets has direct positive effect on detection accuracy while increases false alarm rate in compare to the original dataset
    • …
    corecore