1,379 research outputs found

    Automatic Malware Detection

    Get PDF
    The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system.The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system

    Detecting crypto-ransomware in IoT networks based on energy consumption footprint

    Get PDF
    An Internet of Things (IoT) architecture generally consists of a wide range of Internet-connected devices or things such as Android devices, and devices that have more computational capabilities (e.g., storage capacities) are likely to be targeted by ransomware authors. In this paper, we present a machine learning based approach to detect ransomware attacks by monitoring power consumption of Android devices. Specifically, our proposed method monitors the energy consumption patterns of different processes to classify ransomware from non-malicious applications. We then demonstrate that our proposed approach out-performs K-Nearest Neighbors, Neural Networks, Support Vector Machine and Random Forest, in terms of accuracy rate, recall rate, precision rate and F-measure

    Robust Mobile Malware Detection

    Get PDF
    The increasing popularity and use of smartphones and hand-held devices have made them the most popular target for malware attackers. Researchers have proposed machine learning-based models to automatically detect malware attacks on these devices. Since these models learn application behaviors solely from the extracted features, choosing an appropriate and meaningful feature set is one of the most crucial steps for designing an effective mobile malware detection system. There are four categories of features for mobile applications. Previous works have taken arbitrary combinations of these categories to design models, resulting in sub-optimal performance. This thesis systematically investigates the individual impact of these feature categories on mobile malware detection systems. Feature categories that complement each other are investigated and categories that add redundancy to the feature space (thereby degrading the performance) are analyzed. In the process, the combination of feature categories that provides the best detection results is identified. Ensuring reliability and robustness of the above-mentioned malware detection systems is of utmost importance as newer techniques to break down such systems continue to surface. Adversarial attack is one such evasive attack that can bypass a detection system by carefully morphing a malicious sample even though the sample was originally correctly identified by the same system. Self-crafted adversarial samples can be used to retrain a model to defend against such attacks. However, randomly using too many such samples, as is currently done in the literature, can further degrade detection performance. This work proposed two intelligent approaches to retrain a classifier through the intelligent selection of adversarial samples. The first approach adopts a distance-based scheme where the samples are chosen based on their distance from malware and benign cluster centers while the second selects the samples based on a probability measure derived from a kernel-based learning method. The second method achieved a 6% improvement in terms of accuracy. To ensure practical deployment of malware detection systems, it is necessary to keep the real-world data characteristics in mind. For example, the benign applications deployed in the market greatly outnumber malware applications. However, most studies have assumed a balanced data distribution. Also, techniques to handle imbalanced data in other domains cannot be applied directly to mobile malware detection since they generate synthetic samples with broken functionality, making them invalid. In this regard, this thesis introduces a novel synthetic over-sampling technique that ensures valid sample generation. This technique is subsequently combined with a dynamic cost function in the learning scheme that automatically adjusts minority class weight during model training which counters the bias towards the majority class and stabilizes the model. This hybrid method provided a 9% improvement in terms of F1-score. Aiming to design a robust malware detection system, this thesis extensively studies machine learning-based mobile malware detection in terms of best feature category combination, resilience against evasive attacks, and practical deployment of detection models. Given the increasing technological advancements in mobile and hand-held devices, this study will be very useful for designing robust cybersecurity systems to ensure safe usage of these devices.Doctor of Philosoph

    Malware Image Classification using Machine Learning with Local Binary Pattern

    Get PDF
    Malware classification is a critical part in the cybersecurity. Traditional methodologies for the malware classification typically use static analysis and dynamic analysis to identify malware. In this paper, a malware classification methodology based on its binary image and extracting local binary pattern (LBP) features are proposed. First, malware images are reorganized into 3 by 3 grids which is mainly used to extract LBP feature. Second, the LBP is implemented on the malware images to extract features in that it is useful in pattern or texture classification. Finally, Tensorflow, a library for machine learning, is applied to classify malware images with the LBP feature. Performance comparison results among different classifiers with different image descriptors such as GIST, a spatial envelope, and the LBP demonstrate that our proposed approach outperforms others
    corecore