17,053 research outputs found

    DroidDetectMW: A Hybrid Intelligent Model for Android Malware Detection

    Get PDF
    Malicious apps specifically aimed at the Android platform have increased in tandem with the proliferation of mobile devices. Malware is now so carefully written that it is difficult to detect. Due to the exponential growth in malware, manual methods of malware are increasingly ineffective. Although prior writers have proposed numerous high-quality approaches, static and dynamic assessments inherently necessitate intricate procedures. The obfuscation methods used by modern malware are incredibly complex and clever. As a result, it cannot be detected using only static malware analysis. As a result, this work presents a hybrid analysis approach, partially tailored for multiple-feature data, for identifying Android malware and classifying malware families to improve Android malware detection and classification. This paper offers a hybrid method that combines static and dynamic malware analysis to give a full view of the threat. Three distinct phases make up the framework proposed in this research. Normalization and feature extraction procedures are used in the first phase of pre-processing. Both static and dynamic features undergo feature selection in the second phase. Two feature selection strategies are proposed to choose the best subset of features to use for both static and dynamic features. The third phase involves applying a newly proposed detection model to classify android apps; this model uses a neural network optimized with an improved version of HHO. Application of binary and multi-class classification is used, with binary classification for benign and malware apps and multi-class classification for detecting malware categories and families. By utilizing the features gleaned from static and dynamic malware analysis, several machine-learning methods are used for malware classification. According to the results of the experiments, the hybrid approach improves the accuracy of detection and classification of Android malware compared to the scenario when considering static and dynamic information separately

    Improved Detection for Advanced Polymorphic Malware

    Get PDF
    Malicious Software (malware) attacks across the internet are increasing at an alarming rate. Cyber-attacks have become increasingly more sophisticated and targeted. These targeted attacks are aimed at compromising networks, stealing personal financial information and removing sensitive data or disrupting operations. Current malware detection approaches work well for previously known signatures. However, malware developers utilize techniques to mutate and change software properties (signatures) to avoid and evade detection. Polymorphic malware is practically undetectable with signature-based defensive technologies. Today’s effective detection rate for polymorphic malware detection ranges from 68.75% to 81.25%. New techniques are needed to improve malware detection rates. Improved detection of polymorphic malware can only be accomplished by extracting features beyond the signature realm. Targeted detection for polymorphic malware must rely upon extracting key features and characteristics for advanced analysis. Traditionally, malware researchers have relied on limited dimensional features such as behavior (dynamic) or source/execution code analysis (static). This study’s focus was to extract and evaluate a limited set of multidimensional topological data in order to improve detection for polymorphic malware. This study used multidimensional analysis (file properties, static and dynamic analysis) with machine learning algorithms to improve malware detection. This research demonstrated improved polymorphic malware detection can be achieved with machine learning. This study conducted a number of experiments using a standard experimental testing protocol. This study utilized three advanced algorithms (Metabagging (MB), Instance Based k-Means (IBk) and Deep Learning Multi-Layer Perceptron) with a limited set of multidimensional data. Experimental results delivered detection results above 99.43%. In addition, the experiments delivered near zero false positives. The study’s approach was based on single case experimental design, a well-accepted protocol for progressive testing. The study constructed a prototype to automate feature extraction, assemble files for analysis, and analyze results through multiple clustering algorithms. The study performed an evaluation of large malware sample datasets to understand effectiveness across a wide range of malware. The study developed an integrated framework which automated feature extraction for multidimensional analysis. The feature extraction framework consisted of four modules: 1) a pre-process module that extracts and generates topological features based on static analysis of machine code and file characteristics, 2) a behavioral analysis module that extracts behavioral characteristics based on file execution (dynamic analysis), 3) an input file construction and submission module, and 4) a machine learning module that employs various advanced algorithms. As with most studies, careful attention was paid to false positive and false negative rates which reduce their overall detection accuracy and effectiveness. This study provided a novel approach to expand the malware body of knowledge and improve the detection for polymorphic malware targeting Microsoft operating systems

    Examining Application Components to Reveal Android Malware

    Get PDF
    Smartphones are becoming ubiquitous in everyday life and malware is exploiting these devices. Therefore, a means to identify the threats of malicious applications is necessary. This paper presents a method to classify and analyze Android malware through application component analysis. The experiment parses select portions from Android packages to collect features using byte sequences and permissions of the application. Multiple machine learning algorithms classify the samples of malware based on these features. The experiment utilizes instance based learner, naive Bayes, decision trees, sequential minimal optimization, boosted naive Bayes, and boosted decision trees to identify the best components that reveal malware characteristics. The best case classifies malicious applications with an accuracy of 99.24% and an area under curve of 0.9890 utilizing boosted decision trees. This method does not require scanning the entire application and provides high true positive rates. This thesis investigates the components to provide malware classification

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall
    • …
    corecore