7,863 research outputs found

    Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data

    Get PDF
    Recent years have seen the rise of more sophisticated attacks including advanced persistent threats (APTs) which pose severe risks to organizations and governments by targeting confidential proprietary information. Additionally, new malware strains are appearing at a higher rate than ever before. Since many of these malware are designed to evade existing security products, traditional defenses deployed by most enterprises today, e.g., anti-virus, firewalls, intrusion detection systems, often fail at detecting infections at an early stage. We address the problem of detecting early-stage infection in an enterprise setting by proposing a new framework based on belief propagation inspired from graph theory. Belief propagation can be used either with "seeds" of compromised hosts or malicious domains (provided by the enterprise security operation center -- SOC) or without any seeds. In the latter case we develop a detector of C&C communication particularly tailored to enterprises which can detect a stealthy compromise of only a single host communicating with the C&C server. We demonstrate that our techniques perform well on detecting enterprise infections. We achieve high accuracy with low false detection and false negative rates on two months of anonymized DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of real-world web proxy logs collected at the border of a large enterprise. Through careful manual investigation in collaboration with the enterprise SOC, we show that our techniques identified hundreds of malicious domains overlooked by state-of-the-art security products

    Malware Detection Module using Machine Learning Algorithms to Assist in Centralized Security in Enterprise Networks

    Get PDF
    Malicious software is abundant in a world of innumerable computer users, who are constantly faced with these threats from various sources like the internet, local networks and portable drives. Malware is potentially low to high risk and can cause systems to function incorrectly, steal data and even crash. Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at breaching the security of the system and compromising user privacy. Typically, anti-virus software is based on a signature definition system which keeps updating from the internet and thus keeping track of known viruses. While this may be sufficient for home-users, a security risk from a new virus could threaten an entire enterprise network. This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also build knowledge and detect files as potential viruses. This is done by extracting system API calls made by various normal and harmful executable, and using machine learning algorithms to classify and hence, rank files on a scale of security risk. While such a system is processor heavy, it is very effective when used centrally to protect an enterprise network which maybe more prone to such threats.Comment: 6 page

    DL-Droid: Deep learning based android malware detection using real devices

    Get PDF
    open access articleThe Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches
    • …
    corecore