438 research outputs found

    Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples

    Get PDF
    Deep neural network (DNN) architectures are considered to be robust to random perturbations. Nevertheless, it was shown that they could be severely vulnerable to slight but carefully crafted perturbations of the input, termed as adversarial samples. In recent years, numerous studies have been conducted in this new area called ``Adversarial Machine Learning” to devise new adversarial attacks and to defend against these attacks with more robust DNN architectures. However, most of the current research has concentrated on utilising model loss function to craft adversarial examples or to create robust models. This study explores the usage of quantified epistemic uncertainty obtained from Monte-Carlo Dropout Sampling for adversarial attack purposes by which we perturb the input to the shifted-domain regions where the model has not been trained on. We proposed new attack ideas by exploiting the difficulty of the target model to discriminate between samples drawn from original and shifted versions of the training data distribution by utilizing epistemic uncertainty of the model. Our results show that our proposed hybrid attack approach increases the attack success rates from 82.59% to 85.14%, 82.96% to 90.13% and 89.44% to 91.06% on MNIST Digit, MNIST Fashion and CIFAR-10 datasets, respectively.Publisher's VersionWOS:000757777400006PMID: 3522177

    Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples

    Get PDF
    Deep neural network (DNN) architectures are considered to be robust to random perturbations. Nevertheless, it was shown that they could be severely vulnerable to slight but carefully crafted perturbations of the input, termed as adversarial samples. In recent years, numerous studies have been conducted in this new area called ``Adversarial Machine Learning” to devise new adversarial attacks and to defend against these attacks with more robust DNN architectures. However, most of the current research has concentrated on utilising model loss function to craft adversarial examples or to create robust models. This study explores the usage of quantified epistemic uncertainty obtained from Monte-Carlo Dropout Sampling for adversarial attack purposes by which we perturb the input to the shifted-domain regions where the model has not been trained on. We proposed new attack ideas by exploiting the difficulty of the target model to discriminate between samples drawn from original and shifted versions of the training data distribution by utilizing epistemic uncertainty of the model. Our results show that our proposed hybrid attack approach increases the attack success rates from 82.59% to 85.14%, 82.96% to 90.13% and 89.44% to 91.06% on MNIST Digit, MNIST Fashion and CIFAR-10 datasets, respectively.publishedVersio

    Towards intelligent operation of future power system: bayesian deep learning based uncertainty modelling technique

    Get PDF
    The increasing penetration level of renewable energy resources (RES) in the power system brings fundamental changes of the system operating paradigms. In the future, the intermittent nature of RES and the corresponding smart grid technologies will lead to a much more volatile power system with higher level uncertainties. At the same time, as a result of the larger scale installation of advanced sensor devices in power system, power system engineers for the first time have the opportunity to gain insights from the influx of massive data sets in order to improve the system performance in various aspects. To this end, it is imperative to explore big data methodologies with the aim of exploring the uncertainty space within such complex data sets and thus supporting real-time decision-making in future power system. In this thesis, Bayesian Deep learning is investigated with the aim of exploring data-driven methodologies to deal with uncertainties which is in the following three aspects. (1) The first part of this thesis proposes a novel probabilistic day-ahead net load forecasting method to capture both epistemic uncertainty and aleatoric uncertainty using Bayesian deep long short-term memory network. The proposed methodological framework employs clustering in sub-profiles and considers residential rooftop PV outputs as input features to enhance the performance of aggregated net load forecasting. Numerical experiments have been carried out based on fine-grained smart meter data from the Australian grid with separately recorded measurements of rooftop PV generation and loads. The results demonstrate the superior performance of the proposed scheme compared with a series of state-of-the-art methods and indicate the importance and effectiveness of sub-profile clustering and high PV visibility. (2) The second part of this thesis studies a novel Conditional Bayesian Deep Auto-Encoder (CBDAC) based security assessment framework to compute a confidence metric of the prediction. This informs not only the operator to judge whether the prediction can be trusted, but it also allows for judging whether the model needs updating. A case study based on IEEE 68-bus system demonstrates that CBDAC outperforms the state-of-the-art machine learning-based DSA methods and the models that need updating under different topologies can be effectively identified. Furthermore, the case study verifies that effective updating of the models is possible even with very limited data. (3) The last part of this thesis proposes a novel Bayesian Deep Reinforcement Learning-based resilient control approach for multi-energy micro-grid. In particular, the proposed approach replaces deterministic network in traditional Reinforcement Learning with Bayesian probabilistic network in order to obtain an approximation of the value function distribution, which effectively solves Q-value overestimation issue. The proposed model is able to provide both energy management during normal operating conditions and resilient control during extreme events in a multi-energy micro-grid system. Comparing with naive DDPG method and optimisation method, the effectiveness and importance of employing Bayesian Reinforcement Learning approach is investigated and illustrated across different operating scenarios. Case studies have shown that by using the Monte Carlo posterior mean of the Bayesian value function distribution instead of a deterministic estimation, the proposed BDDPG method achieves a near-optimum policy in a more stable process, which verifies the robustness and the practicability of the proposed approach.Open Acces

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements

    Innovative Two-Stage Fuzzy Classification for Unknown Intrusion Detection

    Get PDF
    Intrusion detection is the essential part of network security in combating against illegal network access or malicious cyberattacks. Due to the constantly evolving nature of cyber attacks, it has been a technical challenge for an intrusion detection system (IDS) to effectively recognize unknown attacks or known attacks with inadequate training data. Therefore in this dissertation work, an innovative two-stage classifier is developed for accurately and efficiently detecting both unknown attacks and known attacks with insufficient or inaccurate training information. The novel two-stage fuzzy classification scheme is based on advanced machine learning techniques specifically for handling the ambiguity of traffic connections and network data. In the first stage of the classification, a fuzzy C-means (FCM) algorithm is employed to softly compute and optimize clustering centers of the training datasets with some degree of fuzziness counting for feature inaccuracy and ambiguity in the training data. Subsequently, a distance-weighted k-NN (k-nearest neighbors) classifier, combined with the Dempster-Shafer Theory (DST), is introduced to assess the belief functions and pignistic probabilities of the incoming data associated with each of known classes to further address the data uncertainty issue in the cyberattack data. In the second stage of the proposed classification algorithm, a subsequent classification scheme is implemented based on the obtained pignistic probabilities and their entropy functions to determine if the input data are normal, one of the known attacks or an unknown attack. Secondly, to strengthen the robustness to attacks, we form the three-layer hierarchy ensemble classifier based on the FCM weighted k-NN DST classifier to have more precise inferences than those made by a single classifier. The proposed intrusion detection algorithm is evaluated through the application of the KDD’99 datasets and their variants containing known and unknown attacks. The experimental results show that the new two-stage fuzzy KNN-DST classifier outperforms other well-known classifiers in intrusion detection and is especially effective in detecting unknown attacks

    Best practices to improve maritime safety in the Gulf of Finland : a risk governance approach

    Get PDF
    The Gulf of Finland of the Baltic Sea is a vulnerable sea area with high volumes of maritime traffic and difficult navigation conditions. The reactive international rules are not anymore regarded adequate in ensuring safety in this sea area. In this paper, a regional proactive risk governance approach is suggested for improving the effectiveness of safety policy formulation and management in the Gulf of Finland, based on the risk governance framework developed by the International Risk Governance Council (IRGC), the Formal Safety Assessment approach adopted by the International Maritime Safety Organisation (IMO), and best practices sought from other sectors and sea areas. The approach is based on a formal process of identifying, assessing and evaluating accident risks at the regional level, and adjusting policies or management practices before accidents occur. The proposed approach sees maritime safety as a holistic system, and manages it by combining a scientific risk assessment with stakeholder input to identify risks and risk control options, and to evaluate risks. A regional proactive approach can improve safety by focusing on actual risks, by designing tailor-made safety measures to control them, by enhancing a positive safety culture in the shipping industry, and by increasing trust among all involved.Non peer reviewe
    corecore