254 research outputs found

    An investigation of a deep learning based malware detection system

    Full text link
    We investigate a Deep Learning based system for malware detection. In the investigation, we experiment with different combination of Deep Learning architectures including Auto-Encoders, and Deep Neural Networks with varying layers over Malicia malware dataset on which earlier studies have obtained an accuracy of (98%) with an acceptable False Positive Rates (1.07%). But these results were done using extensive man-made custom domain features and investing corresponding feature engineering and design efforts. In our proposed approach, besides improving the previous best results (99.21% accuracy and a False Positive Rate of 0.19%) indicates that Deep Learning based systems could deliver an effective defense against malware. Since it is good in automatically extracting higher conceptual features from the data, Deep Learning based systems could provide an effective, general and scalable mechanism for detection of existing and unknown malware.Comment: 13 Pages, 4 figure

    A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory Analysis

    Get PDF
    Now a day the threat of malware is increasing rapidly. A software that sneaks to your computer system without your knowledge with a harmful intent to disrupt your computer operations. Due to the vast number of malware, it is impossible to handle malware by human engineers. Therefore, security researchers are taking great efforts to develop accurate and effective techniques to detect malware. This paper presents a semantic and detailed survey of methods used for malware detection like signature-based and heuristic-based. The Signature-based technique is largely used today by anti-virus software to detect malware, is fast and capable to detect known malware. However, it is not effective in detecting zero-day malware and it is easily defeated by malware that use obfuscation techniques. Likewise, a considerable false positive rate and high amount of scanning time are the main limitations of heuristic-based techniques. Alternatively, memory analysis is a promising technique that gives a comprehensive view of malware and it is expected to become more popular in malware analysis. The main contributions of this paper are: (1) providing an overview of malware types and malware detection approaches, (2) discussing the current malware analysis techniques, their findings and limitations, (3) studying the malware obfuscation, attacking and anti-analysis techniques, and (4) exploring the structure of memory-based analysis in malware detection. The detection approaches have been compared with each other according to their techniques, selected features, accuracy rates, and their advantages and disadvantages. This paper aims to help the researchers to have a general view of malware detection field and to discuss the importance of memory-based analysis in malware detection

    Malware Resistant Data Protection in Hyper-connected Networks: A survey

    Full text link
    Data protection is the process of securing sensitive information from being corrupted, compromised, or lost. A hyperconnected network, on the other hand, is a computer networking trend in which communication occurs over a network. However, what about malware. Malware is malicious software meant to penetrate private data, threaten a computer system, or gain unauthorised network access without the users consent. Due to the increasing applications of computers and dependency on electronically saved private data, malware attacks on sensitive information have become a dangerous issue for individuals and organizations across the world. Hence, malware defense is critical for keeping our computer systems and data protected. Many recent survey articles have focused on either malware detection systems or single attacking strategies variously. To the best of our knowledge, no survey paper demonstrates malware attack patterns and defense strategies combinedly. Through this survey, this paper aims to address this issue by merging diverse malicious attack patterns and machine learning (ML) based detection models for modern and sophisticated malware. In doing so, we focus on the taxonomy of malware attack patterns based on four fundamental dimensions the primary goal of the attack, method of attack, targeted exposure and execution process, and types of malware that perform each attack. Detailed information on malware analysis approaches is also investigated. In addition, existing malware detection techniques employing feature extraction and ML algorithms are discussed extensively. Finally, it discusses research difficulties and unsolved problems, including future research directions.Comment: 30 pages, 9 figures, 7 tables, no where submitted ye

    CryptoKnight:generating and modelling compiled cryptographic primitives

    Get PDF
    Cryptovirological augmentations present an immediate, incomparable threat. Over the last decade, the substantial proliferation of crypto-ransomware has had widespread consequences for consumers and organisations alike. Established preventive measures perform well, however, the problem has not ceased. Reverse engineering potentially malicious software is a cumbersome task due to platform eccentricities and obfuscated transmutation mechanisms, hence requiring smarter, more efficient detection strategies. The following manuscript presents a novel approach for the classification of cryptographic primitives in compiled binary executables using deep learning. The model blueprint, a Dynamic Convolutional Neural Network (DCNN), is fittingly configured to learn from variable-length control flow diagnostics output from a dynamic trace. To rival the size and variability of equivalent datasets, and to adequately train our model without risking adverse exposure, a methodology for the procedural generation of synthetic cryptographic binaries is defined, using core primitives from OpenSSL with multivariate obfuscation, to draw a vastly scalable distribution. The library, CryptoKnight, rendered an algorithmic pool of AES, RC4, Blowfish, MD5 and RSA to synthesise combinable variants which automatically fed into its core model. Converging at 96% accuracy, CryptoKnight was successfully able to classify the sample pool with minimal loss and correctly identified the algorithm in a real-world crypto-ransomware applicatio

    Agent-based Vs Agent-less Sandbox for Dynamic Behavioral Analysis

    Get PDF
    Malicious software is detected and classified by either static analysis or dynamic analysis. In static analysis, malware samples are reverse engineered and analyzed so that signatures of malware can be constructed. These techniques can be easily thwarted through polymorphic, metamorphic malware, obfuscation and packing techniques, whereas in dynamic analysis malware samples are executed in a controlled environment using the sandboxing technique, in order to model the behavior of malware. In this paper, we have analyzed Petya, Spyeye, VolatileCedar, PAFISH etc. through Agent-based and Agentless dynamic sandbox systems in order to investigate and benchmark their efficiency in advanced malware detection
    • …
    corecore