1,613 research outputs found

    An LSPI based reinforcement learning approach to enable network cooperation in cognitive wireless sensor networks

    Get PDF
    The number of wirelessly communicating devices increases every day, along with the number of communication standards and technologies that they use to exchange data. A relatively new form of research is trying to find a way to make all these co-located devices not only capable of detecting each other's presence, but to go one step further - to make them cooperate. One recently proposed way to tackle this problem is to engage into cooperation by activating 'network services' (such as internet sharing, interference avoidance, etc.) that offer benefits for other co-located networks. This approach reduces the problem to the following research topic: how to determine which network services would be beneficial for all the cooperating networks. In this paper we analyze and propose a conceptual solution for this problem using the reinforcement learning technique known as the Least Square Policy Iteration (LSPI). The proposes solution uses a self-learning entity that negotiates between different independent and co-located networks. First, the reasoning entity uses self-learning techniques to determine which service configuration should be used to optimize the network performance of each single network. Afterwards, this performance is used as a reference point and LSPI is used to deduce if cooperating with other co-located networks can lead to even further performance improvements

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    MISAT: Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF
    MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully exploit the MST knowledge chain involving public and industrial partners alike. The cluster covers MST-related developments for the spacecraft bus and payload, as well as the satellite architecture. Particular emphasis is given to distributed systems in space to fully exploit the potential of miniaturization for future mission concepts. Examples of current developments are wireless sensor and actuator networks with plug and play characteristics, autonomous digital Sun sensors, re-configurable radio front ends with minimum power consumption, or micro-machined electrostatic accelerometer and gradiometer system for scientific research in fundamental physics as well as geophysics. As a result of MISAT, a first nano-satellite will be launched in 2007 to demonstrate the next generation of Sun sensors, power subsystems and satellite architecture technology. Rapid access to in-orbit technology demonstration and verification will be provided by a series of small satellites. This will include a formation flying mission, which will increasingly rely on MISAT technology to improve functionality and reduce size, mass and power for advanced technology demonstration and novel scientific applications.
    corecore