730 research outputs found

    Making triangulations 4-connected using flips

    Full text link
    We show that any combinatorial triangulation on n vertices can be transformed into a 4-connected one using at most floor((3n - 9)/5) edge flips. We also give an example of an infinite family of triangulations that requires this many flips to be made 4-connected, showing that our bound is tight. In addition, for n >= 19, we improve the upper bound on the number of flips required to transform any 4-connected triangulation into the canonical triangulation (the triangulation with two dominant vertices), matching the known lower bound of 2n - 15. Our results imply a new upper bound on the diameter of the flip graph of 5.2n - 33.6, improving on the previous best known bound of 6n - 30.Comment: 22 pages, 8 figures. Accepted to CGTA special issue for CCCG 2011. Conference version available at http://2011.cccg.ca/PDFschedule/papers/paper34.pd

    A History of Flips in Combinatorial Triangulations

    Get PDF
    Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.Comment: Added a paragraph referencing earlier work in the vertex-labelled setting that has implications for the unlabeled settin

    The polytope of non-crossing graphs on a planar point set

    Full text link
    For any finite set \A of nn points in R2\R^2, we define a (3n−3)(3n-3)-dimensional simple polyhedron whose face poset is isomorphic to the poset of ``non-crossing marked graphs'' with vertex set \A, where a marked graph is defined as a geometric graph together with a subset of its vertices. The poset of non-crossing graphs on \A appears as the complement of the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face, of dimension 2ni+n−32n_i +n -3 where nin_i is the number of points of \A in the interior of \conv(\A). The vertices of this polytope are all the pseudo-triangulations of \A, and the edges are flips of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or insertion of a single edge. As a by-product of our construction we prove that all pseudo-triangulations are infinitesimally rigid graphs.Comment: 28 pages, 16 figures. Main change from v1 and v2: Introduction has been reshape

    Non-connected toric Hilbert schemes

    Full text link
    We construct small (50 and 26 points, respectively) point sets in dimension 5 whose graphs of triangulations are not connected. These examples improve our construction in J. Amer. Math. Soc., 13:3 (2000), 611--637 not only in size, but also in that their toric Hilbert schemes are not connected either, a question left open in that article. Additionally, the point sets can easily be put into convex position, providing examples of 5-dimensional polytopes with non-connected graph of triangulations.Comment: 18 pages, 2 figures. Except for Remark 2.6 (see below) changes w.r.t. version 2 are mostly minor editings suggested by an anonimous referee of "Mathematische Annalen". The paper has been accepted in that journal. Most of the contents of Remark 2.6 have been deleted, since there was a flaw in the argumen
    • …
    corecore