6,877 research outputs found

    Making the use of maximal ideals constructive

    Get PDF
    AbstractThe purpose of this paper is to decipher constructively a lemma of Suslin which played a central role in his second solution of Serre’s problem on projective modules over polynomial rings. This lemma says that for a commutative ring A if 〈v1(X),…,vn(X)〉=A[X] where v1 is monic and n≥3, then there exist γ1,…,γℓ∈En−1(A[X]) such that, denoting by wi the first coordinate of γit(v2,…,vn), we have 〈Res(v1,w1),…,Res(v1,wℓ)〉=A. By the constructive proof we give, Suslin’s proof of Serre’s problem becomes fully constructive. Moreover, the new method with which we treat this academic example may be a model for miming constructively abstract proofs in which one works modulo a generic maximal ideal in order to prove that an ideal contains 1

    An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization

    Full text link
    In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring RR, i.e., a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over RR. For a finitely generated maximal ideal m\mathfrak{m} in a commutative ring RR we show how solving (in)homogeneous linear systems over RmR_{\mathfrak{m}} can be reduced to solving associated systems over RR. Hence, the computability of RR implies that of RmR_{\mathfrak{m}}. As a corollary we obtain the computability of the category of finitely presented RmR_{\mathfrak{m}}-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a by-product, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.Comment: Fixed a typo in the proof of Lemma 4.3 spotted by Sebastian Posu

    An algorithmic approach to the existence of ideal objects in commutative algebra

    Full text link
    The existence of ideal objects, such as maximal ideals in nonzero rings, plays a crucial role in commutative algebra. These are typically justified using Zorn's lemma, and thus pose a challenge from a computational point of view. Giving a constructive meaning to ideal objects is a problem which dates back to Hilbert's program, and today is still a central theme in the area of dynamical algebra, which focuses on the elimination of ideal objects via syntactic methods. In this paper, we take an alternative approach based on Kreisel's no counterexample interpretation and sequential algorithms. We first give a computational interpretation to an abstract maximality principle in the countable setting via an intuitive, state based algorithm. We then carry out a concrete case study, in which we give an algorithmic account of the result that in any commutative ring, the intersection of all prime ideals is contained in its nilradical

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page
    • …
    corecore