213,142 research outputs found

    Making Sensors, Making Sense, Making Stimuli: The State of the Art in Wearables Research from ISWC 2019

    Get PDF
    The International Symposium on Wearable Computers (ISWC) has been the leading research venue for wearable technology research since 1997. This year, the 23rd ISWC was held in London, UK from Sept 9-13th. Following on the last 8 years of successful collaboration, ISWC was co-located with the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)

    Line and wall follower hexapod robot

    Get PDF
    Robot widely use to help human to do something, especially for difficult or danger task. To fulfil the robot requirements, some techniques, sensors and controller have been applied. Due to kind of robot is a hexapod robot, which it develops in this research. Hexapod robot is a mechanical vehicle that’s walk on 6 legs. A hexapod robot movement are guided with guidance, they are line and wall. Fuzzy logic control as intelligent control is applied to govern the robot follow line and wall. Fuzzy logic controller is used to create a smooth response of robot behaviour rather than logic programming. Infrared sensors are used to sense line and distance to the wall as the input variable for the controller. Based on these signals, the controller control the turning angle of forward movement thus making robot to move forward and turning in same time

    Towards Activity Context using Software Sensors

    Full text link
    Service-Oriented Computing delivers the promise of configuring and reconfiguring software systems to address user's needs in a dynamic way. Context-aware computing promises to capture the user's needs and hence the requirements they have on systems. The marriage of both can deliver ad-hoc software solutions relevant to the user in the most current fashion. However, here it is a key to gather information on the users' activity (that is what they are doing). Traditionally any context sensing was conducted with hardware sensors. However, software can also play the same role and in some situations will be more useful to sense the activity of the user. Furthermore they can make use of the fact that Service-oriented systems exchange information through standard protocols. In this paper we discuss our proposed approach to sense the activity of the user making use of software

    Effects of aircraft design on STOL ride quality: A simulator study

    Get PDF
    To improve the ride quality in short takeoff aircraft, several means have been investigated. In general, these methods consist of placing sensors in the aircraft which sense aircraft motion, usually linear accelerations and angular rates. These signals are then used to deflect control surfaces which generate aerodynamic forces and moments which tend to minimize the motion which the passenger feels. One of the disadvantages of some of these systems is that they may tend to degrade the handling qualities or controllability of the airplane, making it more difficult or annoying for the pilot to fly. Rather than using active control systems to control ride quality, one might possibly design aircraft so that they are inherently pleasant to ride. The purpose of this study is to determine the relationship between characteristic aircraft motions and aircraft ride quality

    “Just whack it on until it gets hot”: working with IoT data in the home

    Get PDF
    This paper presents findings from a co-design project that aims to augment the practices of professional energy advisors with environmental data from sensors deployed in clients’ homes. Premised on prior ethnographic observations we prototyped a sensor platform to support the work of tailoring advice-giving to particular homes. We report on the deployment process and the findings to emerge, particularly the work involved in making sense of or accounting for the data in the course of advice-giving. Our ethnomethodological analysis focuses on the ways in which data is drawn upon as a resource in the home visit, and how understanding and advice-giving turns upon unpacking the indexical relationship of the data to the situated goings-on in the home. This insight, coupled with further design workshops with the advisors, shaped requirements for an interactive system that makes the sensor data available for visual inspection and annotation to support the situated sense-making that is key to giving energy advice

    “Just whack it on until it gets hot”: working with IoT data in the home

    Get PDF
    This paper presents findings from a co-design project that aims to augment the practices of professional energy advisors with environmental data from sensors deployed in clients’ homes. Premised on prior ethnographic observations we prototyped a sensor platform to support the work of tailoring advice-giving to particular homes. We report on the deployment process and the findings to emerge, particularly the work involved in making sense of or accounting for the data in the course of advice-giving. Our ethnomethodological analysis focuses on the ways in which data is drawn upon as a resource in the home visit, and how understanding and advice-giving turns upon unpacking the indexical relationship of the data to the situated goings-on in the home. This insight, coupled with further design workshops with the advisors, shaped requirements for an interactive system that makes the sensor data available for visual inspection and annotation to support the situated sense-making that is key to giving energy advice

    GelSight360: An Omnidirectional Camera-Based Tactile Sensor for Dexterous Robotic Manipulation

    Full text link
    Camera-based tactile sensors have shown great promise in enhancing a robot's ability to perform a variety of dexterous manipulation tasks. Advantages of their use can be attributed to the high resolution tactile data and 3D depth map reconstructions they can provide. Unfortunately, many of these tactile sensors use either a flat sensing surface, sense on only one side of the sensor's body, or have a bulky form-factor, making it difficult to integrate the sensors with a variety of robotic grippers. Of the camera-based sensors that do have all-around, curved sensing surfaces, many cannot provide 3D depth maps; those that do often require optical designs specified to a particular sensor geometry. In this work, we introduce GelSight360, a fingertip-like, omnidirectional, camera-based tactile sensor capable of producing depth maps of objects deforming the sensor's surface. In addition, we introduce a novel cross-LED lighting scheme that can be implemented in different all-around sensor geometries and sizes, allowing the sensor to easily be reconfigured and attached to different grippers of varying DOFs. With this work, we enable roboticists to quickly and easily customize high resolution tactile sensors to fit their robotic system's needs
    • 

    corecore