33 research outputs found

    State of the Art on Stylized Fabrication

    Get PDF
    © 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state-of-the-art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    Boxelization: folding 3D objects into boxes

    Get PDF
    We present a method for transforming a 3D object into a cube or a box using a continuous folding sequence. Our method produces a single, connected object that can be physically fabricated and folded from one shape to the other. We segment the object into voxels and search for a voxel-tree that can fold from the input shape to the target shape. This involves three major steps: finding a good voxelization, finding the tree structure that can form the input and target shapes' configurations, and finding a non-intersecting folding sequence. We demonstrate our results on several input 3D objects and also physically fabricate some using a 3D printer

    State of the art on stylized fabrication

    Get PDF
    © 2019 Copyright held by the owner/author(s). Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as stylized fabrication methods. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion, or to devise a particular interaction with the fabricated model. In this course, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    Mesh Editing with an Embedded Network of Curves

    Get PDF
    http://ieeexplore.ieee.orgWe propose a method for uncalibrated stereo matching. The method applies gradual elastic deformation to the line segments in a pair of images until they match with each other. By using an energy function and a neighborhood function, matching is performed in a coarse-to-fine manner. Our method gives point correspondences with a low proportion of outliers and is robust in the uncalibrated case (with no need to estimate the epipolar geometry). The computation complexity is proportional to the square of the number of line segments in the images, which is relatively efficient compared with other elaborate methods

    Graph Rotation Systems for Physical Construction of Large Structures

    Get PDF
    In this dissertation, I present an approach for physical construction of large structures. The approach is based on the graph rotation system framework. I propose two kinds of physical structures to represent the shape of design models. I have developed techniques to generate developable panels from any input polygonal mesh, which can be easily assembled to get the shape of the input polygonal mesh. The first structure is called plain woven structures. I have developed the ?projection method? to convert mathematical weaving cycles on any given polygonal mesh to developable strip panels. The width of weaving strips varies so that the surface of the input model can be covered almost completely. When these strip panels are assembled together, resulting shape resembles to a weaving in 3-space. The second structure is called band decomposition structures. I have developed a method to convert any given polygonal mesh into star-like developable elements, which we call vertex panels. Assembling vertex panels results in band decomposition structures. These band decomposition structures correspond to 2D-thickening of graphs embedded on surfaces. These band decompositions are contractible to their original graph. In a 2D-thickening, each vertex thickens to a polygon and each edge thickens to a band. Within the resulting band decomposition, each polygon corresponds to a vertex and each band corresponds to an edge that connects two vertex polygons. Since the approach is based on graph rotation system framework, the two structures do not have restrictions on design models. The input mesh can be of any genus. The faces in the input mesh can be triangle, quadrilateral, and any polygon. The advantages of this kind of large physical structure construction are low-cost material and prefabrication, easy assemble. Our techniques take the digital fabrication in a new direction and create complex and organic 3D forms. Along the theme of architecture this research has great implication for structure design and makes the more difficult task of construction techniques easier to understand for the fabricator. It has implications to the sculpture world as well as architecture

    Developable Surfaces from Arbitrary Sketched Boundaries

    Get PDF
    International audienceDevelopable surfaces are surfaces that can be unfolded into the plane with no distortion. Although ubiquitous in our everyday surroundings, modeling them using existing tools requires significant geometric expertise and time. Our paper simplifies the modeling process by introducing an intuitive sketch-based approach for modeling developables. We develop an algorithm that given an arbitrary, user specified 3D polyline boundary, constructed using a sketching interface, generates a smooth discrete developable surface that interpolates this boundary. Our method utilizes the connection between developable surfaces and the convex hulls of their boundaries. The method explores the space of possible interpolating surfaces searching for a developable surface with desirable shape characteristics such as fairness and predictability. The algorithm is not restricted to any particular subset of developable surfaces. We demonstrate the effectiveness of our method through a series of examples, from architectural design to garments

    Stripification of Free-Form Surfaces With Global Error Bounds for Developable Approximation

    Full text link
    corecore