47,457 research outputs found

    Investigating Poor Performance Regions of Black Boxes: LIME-based Exploration in Sepsis Detection

    Full text link
    Interpreting machine learning models remains a challenge, hindering their adoption in clinical settings. This paper proposes leveraging Local Interpretable Model-Agnostic Explanations (LIME) to provide interpretable descriptions of black box classification models in high-stakes sepsis detection. By analyzing misclassified instances, significant features contributing to suboptimal performance are identified. The analysis reveals regions where the classifier performs poorly, allowing the calculation of error rates within these regions. This knowledge is crucial for cautious decision-making in sepsis detection and other critical applications. The proposed approach is demonstrated using the eICU dataset, effectively identifying and visualizing regions where the classifier underperforms. By enhancing interpretability, our method promotes the adoption of machine learning models in clinical practice, empowering informed decision-making and mitigating risks in critical scenarios.Comment: Accepted at the 1st World Conference on eXplainable Artificial Intelligence - Late-breaking work, Demos and Doctoral Consortium, 202

    Interpretable Machine Learning Model for Clinical Decision Making

    Get PDF
    Despite machine learning models being increasingly used in medical decision-making and meeting classification predictive accuracy standards, they remain untrusted black-boxes due to decision-makers\u27 lack of insight into their complex logic. Therefore, it is necessary to develop interpretable machine learning models that will engender trust in the knowledge they generate and contribute to clinical decision-makers intention to adopt them in the field. The goal of this dissertation was to systematically investigate the applicability of interpretable model-agnostic methods to explain predictions of black-box machine learning models for medical decision-making. As proof of concept, this study addressed the problem of predicting the risk of emergency readmissions within 30 days of being discharged for heart failure patients. Using a benchmark data set, supervised classification models of differing complexity were trained to perform the prediction task. More specifically, Logistic Regression (LR), Random Forests (RF), Decision Trees (DT), and Gradient Boosting Machines (GBM) models were constructed using the Healthcare Cost and Utilization Project (HCUP) Nationwide Readmissions Database (NRD). The precision, recall, area under the ROC curve for each model were used to measure predictive accuracy. Local Interpretable Model-Agnostic Explanations (LIME) was used to generate explanations from the underlying trained models. LIME explanations were empirically evaluated using explanation stability and local fit (R2). The results demonstrated that local explanations generated by LIME created better estimates for Decision Trees (DT) classifiers

    Towards Interpretable Explanations for Transfer Learning in Sequential Tasks

    Get PDF
    People increasingly rely on machine learning (ML) to make intelligent decisions. However, the ML results are often difficult to interpret and the algorithms do not support interaction to solicit clarification or explanation. In this paper, we highlight an emerging research area of interpretable explanations for transfer learning in sequential tasks, in which an agent must explain how it learns a new task given prior, common knowledge. The goal is to enhance a user’s ability to trust and use the system output and to enable iterative feedback for improving the system. We review prior work in probabilistic systems, sequential decision-making, interpretable explanations, transfer learning, and interactive machine learning, and identify an intersection that deserves further research focus. We believe that developing adaptive, transparent learning models will build the foundation for better human-machine systems in applications for elder care, education, and health care
    • …
    corecore