4,444 research outputs found

    A Workflow-oriented Language for Scalable Data Analytics

    Get PDF
    Proceedings of: First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto (Portugal), August 27-28, 2014.Data in digital repositories are everyday more and more massive and distributed. Therefore analyzing them requires efficient data analysis techniques and scalable storage and computing platforms. Cloud computing infrastructures offer an effective support for addressing both the computational and data storage needs of big data mining and parallel knowledge discovery applications. In fact, complex data mining tasks involve data- and compute-intensive algorithms that require large and efficient storage facilities together with high performance processors to get results in acceptable times. In this paper we describe a Data Mining Cloud Framework (DMCF) designed for developing and executing distributed data analytics applications as workflows of services. We describe also a workflow-oriented language, called JS4Cloud, to support the design and execution of script-based data analysis workflows on DMCF. We finally present a data analysis application developed with JS4Cloud, and the scalability achieved executing it on DMCF.The work presented in this paper has been partially supported by EU under the COST programme Action IC1305, ’Network for Sustainable Ultrascale Computing (NESUS)’

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    • …
    corecore