3,215 research outputs found

    Making cyclic circuits acyclic

    Get PDF
    Cyclic circuits that do not hold state or oscillate are often the most convenient representation for certain functions, such as arbiters, and can easily by produced inadvertently in high-level synthesis, yet are troublesome for most circuit analysis tools. This paper presents an algorithm that generates an acyclic circuit that computes the same function as a given cyclic circuit for those inputs where the cyclic circuit does not oscillate or hold state. The algorithm identifies all patterns on inputs and internal nodes that lead to acyclic evaluation orders for the cyclic circuit, which are represented as acyclic circuit fragments, and then combines these to produce an acyclic circuit that can exhibit all of these behaviors. Experiments results suggest this potentially exponential algorithm is practical for small circuits and may be improved to handle larger circuits. This algorithm should make dealing with cyclic combinational circuits nearly as easy as dealing with their acyclic counterparts

    Transforming Cyclic Circuits Into Acyclic Equivalents

    Get PDF
    Designers and high-level synthesis tools can introduce unwanted cycles in digital circuits, and for certain combinational functions, cyclic circuits that are stable and do not hold state are the smallest or most natural representations. Cyclic combinational circuits have well-defined functional behavior yet wreak havoc with most logic synthesis and timing tools, which require combinational logic to be acyclic. As such, some sort of cycle-removal step is necessary to handle these circuits with existing tools. We present a two-stage algorithm for transforming a combinational cyclic circuit into an equivalent acyclic circuit. The first part quickly and exactly characterizes all combinational behavior of a cyclic circuit. It starts by applying input patterns to each input and examining the boundary between gates whose outputs are and are not defined to find additional input patterns that make the circuit behave combinationally. It produces sets of assignments to inputs that together cover all combinational behavior. This can be used to report errors, as an optimization aid, or to restructure the circuit into an acyclic equivalent. The second stage of our algorithm does this restructuring by creating an acyclic circuit fragment from each of these assignments and assembles these fragments into an acyclic circuit that reproduces all the combinational behavior of the original cyclic circuit. Experiments show that our algorithm runs in seconds on real-life cyclic circuits, making it useful in practice

    Effective Theories for Circuits and Automata

    Full text link
    Abstracting an effective theory from a complicated process is central to the study of complexity. Even when the underlying mechanisms are understood, or at least measurable, the presence of dissipation and irreversibility in biological, computational and social systems makes the problem harder. Here we demonstrate the construction of effective theories in the presence of both irreversibility and noise, in a dynamical model with underlying feedback. We use the Krohn-Rhodes theorem to show how the composition of underlying mechanisms can lead to innovations in the emergent effective theory. We show how dissipation and irreversibility fundamentally limit the lifetimes of these emergent structures, even though, on short timescales, the group properties may be enriched compared to their noiseless counterparts.Comment: 11 pages, 9 figure

    Enumerating Cyclic Orientations of a Graph

    Get PDF
    Acyclic and cyclic orientations of an undirected graph have been widely studied for their importance: an orientation is acyclic if it assigns a direction to each edge so as to obtain a directed acyclic graph (DAG) with the same vertex set; it is cyclic otherwise. As far as we know, only the enumeration of acyclic orientations has been addressed in the literature. In this paper, we pose the problem of efficiently enumerating all the \emph{cyclic} orientations of an undirected connected graph with nn vertices and mm edges, observing that it cannot be solved using algorithmic techniques previously employed for enumerating acyclic orientations.We show that the problem is of independent interest from both combinatorial and algorithmic points of view, and that each cyclic orientation can be listed with O~(m)\tilde{O}(m) delay time. Space usage is O(m)O(m) with an additional setup cost of O(n2)O(n^2) time before the enumeration begins, or O(mn)O(mn) with a setup cost of O~(m)\tilde{O}(m) time

    Organising metabolic networks: cycles in flux distributions

    Get PDF
    Metabolic networks are among the most widely studied biological systems. The topology and interconnections of metabolic reactions have been well described for many species, but are not sufficient to understand how their activity is regulated in living organisms. The principles directing the dynamic organisation of reaction fluxes remain poorly understood. Cyclic structures are thought to play a central role in the homeostasis of biological systems and in their resilience to a changing environment. In this work, we investigate the role of fluxes of matter cycling in metabolic networks. First, we introduce a methodology for the computation of cyclic and acyclic fluxes in metabolic networks, adapted from an algorithm initially developed to study cyclic fluxes in trophic networks. Subsequently, we apply this methodology to the analysis of three metabolic systems, including the central metabolism of wild type and a deletion mutant of Escherichia coli, erythrocyte metabolism and the central metabolism of the bacterium Methylobacterium extorquens. The role of cycles in driving and maintaining the performance of metabolic functions upon perturbations is unveiled through these examples. This methodology may be used to further investigate the role of cycles in living organisms, their pro-activity and organisational invariance, leading to a better understanding of biological entailment and information processing

    A formal theory of cubical complexes Formal report, 1 Sep. 1968 - 30 Apr. 1969

    Get PDF
    Algorithm for computation of test failures in cyclic circuit

    Cuts in matchings of 3-connected cubic graphs

    Full text link
    We discuss conjectures on Hamiltonicity in cubic graphs (Tait, Barnette, Tutte), on the dichromatic number of planar oriented graphs (Neumann-Lara), and on even graphs in digraphs whose contraction is strongly connected (Hochst\"attler). We show that all of them fit into the same framework related to cuts in matchings. This allows us to find a counterexample to the conjecture of Hochst\"attler and show that the conjecture of Neumann-Lara holds for all planar graphs on at most 26 vertices. Finally, we state a new conjecture on bipartite cubic oriented graphs, that naturally arises in this setting.Comment: 12 pages, 5 figures, 1 table. Improved expositio
    corecore