136,802 research outputs found

    Digital Image

    Full text link
    This paper considers the ontological significance of invisibility in relation to the question ‘what is a digital image?’ Its argument in a nutshell is that the emphasis on visibility comes at the expense of latency and is symptomatic of the style of thinking that dominated Western philosophy since Plato. This privileging of visible content necessarily binds images to linguistic (semiotic and structuralist) paradigms of interpretation which promote representation, subjectivity, identity and negation over multiplicity, indeterminacy and affect. Photography is the case in point because until recently critical approaches to photography had one thing in common: they all shared in the implicit and incontrovertible understanding that photographs are a medium that must be approached visually; they took it as a given that photographs are there to be looked at and they all agreed that it is only through the practices of spectatorship that the secrets of the image can be unlocked. Whatever subsequent interpretations followed, the priori- ty of vision in relation to the image remained unperturbed. This undisputed belief in the visibility of the image has such a strong grasp on theory that it imperceptibly bonded together otherwise dissimilar and sometimes contradictory methodol- ogies, preventing them from noticing that which is the most unexplained about images: the precedence of looking itself. This self-evident truth of visibility casts a long shadow on im- age theory because it blocks the possibility of inquiring after everything that is invisible, latent and hidden

    Robots, drugs, reality and education: how the future will change how we think

    Get PDF
    Emerging technologies for learning report - Article exploring various future trends and their potential impact on educatio

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Negative Statements Considered Useful

    No full text
    Knowledge bases (KBs), pragmatic collections of knowledge about notable entities, are an important asset in applications such as search, question answering and dialogue. Rooted in a long tradition in knowledge representation, all popular KBs only store positive information, while they abstain from taking any stance towards statements not contained in them. In this paper, we make the case for explicitly stating interesting statements which are not true. Negative statements would be important to overcome current limitations of question answering, yet due to their potential abundance, any effort towards compiling them needs a tight coupling with ranking. We introduce two approaches towards compiling negative statements. (i) In peer-based statistical inferences, we compare entities with highly related entities in order to derive potential negative statements, which we then rank using supervised and unsupervised features. (ii) In query-log-based text extraction, we use a pattern-based approach for harvesting search engine query logs. Experimental results show that both approaches hold promising and complementary potential. Along with this paper, we publish the first datasets on interesting negative information, containing over 1.1M statements for 100K popular Wikidata entities

    Pathways: Augmenting interoperability across scholarly repositories

    Full text link
    In the emerging eScience environment, repositories of papers, datasets, software, etc., should be the foundation of a global and natively-digital scholarly communications system. The current infrastructure falls far short of this goal. Cross-repository interoperability must be augmented to support the many workflows and value-chains involved in scholarly communication. This will not be achieved through the promotion of single repository architecture or content representation, but instead requires an interoperability framework to connect the many heterogeneous systems that will exist. We present a simple data model and service architecture that augments repository interoperability to enable scholarly value-chains to be implemented. We describe an experiment that demonstrates how the proposed infrastructure can be deployed to implement the workflow involved in the creation of an overlay journal over several different repository systems (Fedora, aDORe, DSpace and arXiv).Comment: 18 pages. Accepted for International Journal on Digital Libraries special issue on Digital Libraries and eScienc

    Managing community membership information in a small-world grid

    Get PDF
    As the Grid matures the problem of resource discovery across communities, where resources now include computational services, is becoming more critical. The number of resources available on a world-wide grid is set to grow exponentially in much the same way as the number of static web pages on the WWW. We observe that the world-wide resource discovery problem can be modelled as a slowly evolving very-large sparse-matrix where individual matrix elements represent nodes’ knowledge of one another. Blocks in the matrix arise where nodes offer more than one service. Blocking effects also arise in the identification of sub-communities in the Grid. The linear algebra community has long been aware of suitable representations of large, sparse matrices. However, matrices the size of the world-wide grid potentially number in the billions, making dense solutions completely intractable. Distributed nodes will not necessarily have the storage capacity to store the addresses of any significant percentage of the available resources. We discuss ways of modelling this problem in the regime of a slowly changing service base including phenomena such as percolating networks and small-world network effects
    corecore