89,205 research outputs found

    Making Neural Networks FAIR

    Get PDF
    Research on neural networks has gained significant momentum over the past few years. Because training is a resource-intensive process and training data cannot always be made available to everyone, there has been a trend to reuse pre-trained neural networks. As such, neural networks themselves have become research data. In this paper, we first present the neural network ontology FAIRnets Ontology, an ontology to make existing neural network models findable, accessible, interoperable, and reusable according to the FAIR principles. Our ontology allows us to model neural networks on a meta-level in a structured way, including the representation of all network layers and their characteristics. Secondly, we have modeled over 18,400 neural networks from GitHub based on this ontology, which we provide to the public as a knowledge graph called FAIRnets, ready to be used for recommending suitable neural networks to data scientists

    Fair Use and Machine Learning

    Get PDF
    There would be a beaten path to the maker of software that could reliably state whether a use of a copyrighted work was protected as fair use. But applying machine learning to fair use faces considerable hurdles. Fair use has generated hundreds of reported cases, but machine learning works best with examples in greater numbers. More examples may be available, from mining the decision making of web sites, from having humans judge fair use examples just as they label images to teach self-driving cars, and using machine learning itself to generate examples. Beyond the number of examples, the form of the data is more abstract than the concrete examples on which machine learning has succeeded, such as computer vision, viewing recommendations, and even in comparison to machine translation, where the operative unit was the sentence, not a concept that could be distributed across a document. But techniques presently in use do find patterns in data to build more abstract features, and then use the same process to build more abstract features. It may be that such automated processes can provide the conceptual blocks necessary. In addition, tools drawn from knowledge engineering (ironically, the branch of artificial intelligence that of late has been eclipsed by machine learning) may extract concepts from such data as judicial opinions. Such tools would include new methods of knowledge representation and automated tagging. If the data questions are overcome, machine learning provides intriguing possibilities, but also faces challenges from the nature of fair use law. Artificial neural networks have shown formidable performance in classification. Classifying fair use examples raises a number of questions. Fair use law is often considered contradictory, vague, and unpredictable. In computer science terminology, the data is “noisy.” That inconsistency could flummox artificial neural networks, or the networks could disclose consistencies that have eluded commentators. Other algorithms such as nearest neighbor and support vectors could likewise both use and test legal reasoning by analogy. Another approach to machine learning, decision trees, may be simpler than other approaches in some respects, but could work on smaller data sets (addressing one of the data issues above) and provide something that machine learning often lacks: transparency. Decision trees disclose their decision-making process, whereas neural networks, especially deep learning, are opaque black boxes. Finally, unsupervised machine learning could be used to explore fair use case law for patterns, whether they be consistent structures in its jurisprudence, or biases that have played an undisclosed role. Any possible patterns found, however, should be treated as possibilities, pending testing by other means

    Learning Scheduling Algorithms for Data Processing Clusters

    Full text link
    Efficiently scheduling data processing jobs on distributed compute clusters requires complex algorithms. Current systems, however, use simple generalized heuristics and ignore workload characteristics, since developing and tuning a scheduling policy for each workload is infeasible. In this paper, we show that modern machine learning techniques can generate highly-efficient policies automatically. Decima uses reinforcement learning (RL) and neural networks to learn workload-specific scheduling algorithms without any human instruction beyond a high-level objective such as minimizing average job completion time. Off-the-shelf RL techniques, however, cannot handle the complexity and scale of the scheduling problem. To build Decima, we had to develop new representations for jobs' dependency graphs, design scalable RL models, and invent RL training methods for dealing with continuous stochastic job arrivals. Our prototype integration with Spark on a 25-node cluster shows that Decima improves the average job completion time over hand-tuned scheduling heuristics by at least 21%, achieving up to 2x improvement during periods of high cluster load

    Contextual Intelligent Load Management Considering Real Time Pricing in a Smart Grid Environment

    Get PDF
    The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks
    • …
    corecore