193 research outputs found

    Java Grande Forum Report: Making Java Work for High-End Computing

    Get PDF
    This document describes the Java Grande Forum and includes its initial deliverables.Theseare reports that convey a succinct set of recommendations from this forum to SunMicrosystems and other purveyors of Java™ technology that will enable GrandeApplications to be developed with the Java programming language

    One-sided differentiability: a challenge for computer algebra systems

    Get PDF
    Computer Algebra Systems (CASs) are extremely powerful and widely used digital tools. Focusing on differentiation, CASs include a command that computes the derivative of functions in one variable (and also the partial derivative of functions in several variables). We will focus in this article on real-valued functions of one real variable. Since CASs usually compute the derivative of real-valued functions as a whole, the value of the computed derivative at points where the left derivative and the right derivative are different (that we will call conflicting points) should be something like "undefined", although this isn't always the case: the output could strongly differ depending on the chosen CAS. We have analysed and compared in this article how some well-known CASs behave when addressing differentiation at the conflicting points of five different functions chosen by the authors. Finally, the ability for calculating one-sided limits of CASs allows to directly compute the result in these cumbersome cases using the formal definition of one-sided derivative, which we have also analysed and compared for the selected CASs. Regarding teaching, this is an important issue, as it is a topic of Secondary Education and nowadays the use of CASs as an auxiliary digital tool for teaching mathematics is very common

    A domain-specific language based approach to component composition, error-detection, and fault prediction

    Get PDF
    Current methods of software production are resource-intensive and often require a number of highly skilled professionals. To develop a well-designed and effectively implemented system requires a large investment of resources, often numbering into millions of pounds. The time required may also prove to be prohibitive. However, many parts of the new systems being currently developed already exist, either in the form of whole or parts of existing systems. It is therefore attractive to reuseexisting code when developing new software, in order to reduce the time andresources required. This thesis proposes the application of a domain-specific language (DSL) to automatic component composition, testing and fault-prediction. The DSL ISinherently based on a domain-model which should aid users of the system m knowing how the system is structured and what responsibilities the system fulfils. The DSL structure proposed in this thesis uses a type system and grammar hence enabling the early detection of syntactically incorrect system usage. Each DSL construct's behaviour can also be defined in a testing DSL, described here as DSL-test. This can take the form of input and output parameters, which should suffice for specifying stateless components, or may necessitate the use of a special method call, described here as a White-Box Test (WBT), which allows the external observer to view the abstract state of a component. Each DSL-construct can be mapped to its implementing components i.e. the component, or amalgamation of components, that implement(s) the behaviour as prescribed by the DSL-construct. User-requirements are described using the DS Land appropriate implementing components (if sufficient exist) are automatically located and integrated. That is to say, given a requirement described in terms of the DSL and sufficient components, the architecture (which was named Hydra) will be able to generate an executable which should behave as desired. The DSL-construct behaviour description language (DSL-test) is designed in such a way that it can be translated into a computer programming language, and so code can be inserted between the system automatically to verify that the implementing component is acting in a way consistent with the model of its expected behaviour. Upon detection of an error, the system examines available data (i.e. where the error occurred, what sort of error was it, and what was the structure of the executable), to attempt to predict the location of the fault and, where possible, make remedialaction. A number of case studies have been investigated and it was found that, if applied to the appropriate problem domain, the approach proposed in this thesis shows promise in terms of full automation and integration of black-box or grey-box software. However, further work is required before it can be claimed that this approach should be used in real scale systems

    A unified robotic kinematic simulation interface.

    Get PDF
    Robotic controller and application programming have evolved along with the application of computer technologies. A PC-based, open architecture controller, off-line programming and simulation system integrated in one-box solution presents the latest advancement in robotics. Open architecture controllers have been proven essential for all aspects of reconfiguration in future manufacturing systems. A Unified Reconfigurable Open Control Architecture (UROCA) research project is under way within the Intelligent Manufacturing Systems (IMS) Centre at the University of Windsor. Applications are for industrial robotic, CNC, and automotive control systems. The UROCA proposed architecture is a reconfigurable system that takes the advantages of different control structure types, thereby integrating them in a way to enhance the controller architecture design. This research develops a graphical robotic simulation platform by creating an optimized object-oriented design. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .D56. Source: Masters Abstracts International, Volume: 44-03, page: 1474. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Performance analysis for parallel programs from multicore to petascale

    Get PDF
    Cutting-edge science and engineering applications require petascale computing. Petascale computing platforms are characterized by both extreme parallelism (systems of hundreds of thousands to millions of cores) and hybrid parallelism (nodes with multicore chips). Consequently, to effectively use petascale resources, applications must exploit concurrency at both the node and system level --- a difficult problem. The challenge of developing scalable petascale applications is only partially aided by existing languages and compilers. As a result, manual performance tuning is often necessary to identify and resolve poor parallel and serial efficiency. Our thesis is that it is possible to achieve unique, accurate, and actionable insight into the performance of fully optimized parallel programs by measuring them with asynchronous-sampling-based call path profiles; attributing the resulting binary-level measurements to source code structure; analyzing measurements on-the-fly and postmortem to highlight performance inefficiencies; and presenting the resulting context- sensitive metrics in three complementary views. To support this thesis, we have developed several techniques for identifying performance problems in fully optimized serial, multithreaded and petascale programs. First, we describe how to attribute very precise (instruction-level) measurements to source-level static and dynamic contexts in fully optimized applications --- all for an average run-time overhead of a few percent. We then generalize this work with the development of logical call path profiling and apply it to work-stealing-based applications. Second, we describe techniques for pinpointing and quantifying parallel inefficiencies such as parallel idleness, parallel overhead and lock contention in multithreaded executions. Third, we show how to diagnose scalability bottlenecks in petascale applications by scaling our our measurement, analysis and presentation tools to support large-scale executions. Finally, we provide a coherent framework for these techniques by sketching a unique and comprehensive performance analysis methodology. This work forms the basis of Rice University's HPCTOOLKIT performance tools

    AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC LANGUAGES

    Get PDF
    A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement of programmer productivity and hardware computational efficiency. The challenge has been exacerbated by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been able to hand-code domain-specific data transformations and vectorization schemes needed to extract the best possible performance on such architectures. In this research, we examined the possibility of automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL approach extends C++14 by embedding into it a high-level data-parallel array language, and by using a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-space transformation algebra within this high-level array language to manipulate array data-layouts and data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization strategy by up to 40% for stencil computations. The compiler also automates distributed data movement with overlapping of local compute with remote data movement using polyhedral integer set analysis. Along with these main innovations, we developed a new technique using C++ template metaprogramming for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate representation that simplifies data flow analysis of abstract DSL constructs. We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing production C code for selected kernels. This gain in performance was obtained while using less than one-tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized and hand-vectorized code, and is an order of magnitude better than existing production DSLs.Doctor of Philosoph

    NASA Tech Briefs, June 1993

    Get PDF
    Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    • …
    corecore