1,174 research outputs found

    Decision-Making for Automated Vehicles Using a Hierarchical Behavior-Based Arbitration Scheme

    Full text link
    Behavior planning and decision-making are some of the biggest challenges for highly automated systems. A fully automated vehicle (AV) is confronted with numerous tactical and strategical choices. Most state-of-the-art AV platforms implement tactical and strategical behavior generation using finite state machines. However, these usually result in poor explainability, maintainability and scalability. Research in robotics has raised many architectures to mitigate these problems, most interestingly behavior-based systems and hybrid derivatives. Inspired by these approaches, we propose a hierarchical behavior-based architecture for tactical and strategical behavior generation in automated driving. It is a generalizing and scalable decision-making framework, utilizing modular behavior blocks to compose more complex behaviors in a bottom-up approach. The system is capable of combining a variety of scenario- and methodology-specific solutions, like POMDPs, RRT* or learning-based behavior, into one understandable and traceable architecture. We extend the hierarchical behavior-based arbitration concept to address scenarios where multiple behavior options are applicable but have no clear priority against each other. Then, we formulate the behavior generation stack for automated driving in urban and highway environments, incorporating parking and emergency behaviors as well. Finally, we illustrate our design in an explanatory evaluation

    Limited Visibility and Uncertainty Aware Motion Planning for Automated Driving

    Full text link
    Adverse weather conditions and occlusions in urban environments result in impaired perception. The uncertainties are handled in different modules of an automated vehicle, ranging from sensor level over situation prediction until motion planning. This paper focuses on motion planning given an uncertain environment model with occlusions. We present a method to remain collision free for the worst-case evolution of the given scene. We define criteria that measure the available margins to a collision while considering visibility and interactions, and consequently integrate conditions that apply these criteria into an optimization-based motion planner. We show the generality of our method by validating it in several distinct urban scenarios

    AutonoVi: Autonomous Vehicle Planning with Dynamic Maneuvers and Traffic Constraints

    Full text link
    We present AutonoVi:, a novel algorithm for autonomous vehicle navigation that supports dynamic maneuvers and satisfies traffic constraints and norms. Our approach is based on optimization-based maneuver planning that supports dynamic lane-changes, swerving, and braking in all traffic scenarios and guides the vehicle to its goal position. We take into account various traffic constraints, including collision avoidance with other vehicles, pedestrians, and cyclists using control velocity obstacles. We use a data-driven approach to model the vehicle dynamics for control and collision avoidance. Furthermore, our trajectory computation algorithm takes into account traffic rules and behaviors, such as stopping at intersections and stoplights, based on an arc-spline representation. We have evaluated our algorithm in a simulated environment and tested its interactive performance in urban and highway driving scenarios with tens of vehicles, pedestrians, and cyclists. These scenarios include jaywalking pedestrians, sudden stops from high speeds, safely passing cyclists, a vehicle suddenly swerving into the roadway, and high-density traffic where the vehicle must change lanes to progress more effectively.Comment: 9 pages, 6 figure

    Safety of autonomous vehicles: A survey on Model-based vs. AI-based approaches

    Full text link
    The growing advancements in Autonomous Vehicles (AVs) have emphasized the critical need to prioritize the absolute safety of AV maneuvers, especially in dynamic and unpredictable environments or situations. This objective becomes even more challenging due to the uniqueness of every traffic situation/condition. To cope with all these very constrained and complex configurations, AVs must have appropriate control architectures with reliable and real-time Risk Assessment and Management Strategies (RAMS). These targeted RAMS must lead to reduce drastically the navigation risks. However, the lack of safety guarantees proves, which is one of the key challenges to be addressed, limit drastically the ambition to introduce more broadly AVs on our roads and restrict the use of AVs to very limited use cases. Therefore, the focus and the ambition of this paper is to survey research on autonomous vehicles while focusing on the important topic of safety guarantee of AVs. For this purpose, it is proposed to review research on relevant methods and concepts defining an overall control architecture for AVs, with an emphasis on the safety assessment and decision-making systems composing these architectures. Moreover, it is intended through this reviewing process to highlight researches that use either model-based methods or AI-based approaches. This is performed while emphasizing the strengths and weaknesses of each methodology and investigating the research that proposes a comprehensive multi-modal design that combines model-based and AI approaches. This paper ends with discussions on the methods used to guarantee the safety of AVs namely: safety verification techniques and the standardization/generalization of safety frameworks

    TiEV: The Tongji Intelligent Electric Vehicle in the Intelligent Vehicle Future Challenge of China

    Full text link
    TiEV is an autonomous driving platform implemented by Tongji University of China. The vehicle is drive-by-wire and is fully powered by electricity. We devised the software system of TiEV from scratch, which is capable of driving the vehicle autonomously in urban paths as well as on fast express roads. We describe our whole system, especially novel modules of probabilistic perception fusion, incremental mapping, the 1st and the 2nd planning and the overall safety concern. TiEV finished 2016 and 2017 Intelligent Vehicle Future Challenge of China held at Changshu. We show our experiences on the development of autonomous vehicles and future trends
    • …
    corecore