20,555 research outputs found

    Requirements for building information modeling based lean production management systems for construction

    Get PDF
    Smooth flow of production in construction is hampered by disparity between individual trade teams' goals and the goals of stable production flow for the project as a whole. This is exacerbated by the difficulty of visualizing the flow of work in a construction project. While the addresses some of the issues in Building information modeling provides a powerful platform for visualizing work flow in control systems that also enable pull flow and deeper collaboration between teams on and off site. The requirements for implementation of a BIM-enabled pull flow construction management software system based on the Last Planner Systemℱ, called ‘KanBIM’, have been specified, and a set of functional mock-ups of the proposed system has been implemented and evaluated in a series of three focus group workshops. The requirements cover the areas of maintenance of work flow stability, enabling negotiation and commitment between teams, lean production planning with sophisticated pull flow control, and effective communication and visualization of flow. The evaluation results show that the system holds the potential to improve work flow and reduce waste by providing both process and product visualization at the work face

    Intelligent Products: Shifting the Production Control Logic in Construction (With Lean and BIM)

    Get PDF
    Production management and control in construction has not been addressed/updated ever since the introduction of Critical Path Method and the Last PlannerÂź system. The predominant outside-in control logic and a fragmented and deep supply chain in construction significantly affect the efficiency over a lifecycle. In a construction project, a large number of organisations interact with the product throughout the process, requiring a significant amount of information handling and synchronisation between these organisations. However, due to the deep supply chains and problems with lack of information integration, the information flow down across the lifecycle poses a significant challenge. This research proposes a product centric system, where the control logic of the production process is embedded within the individual components from the design phase. The solution is enabled by a number of technologies and tools such as Building Information Modelling, Internet of Things, Messaging Systems and within the conceptual process framework of Lean Construction. The vision encompasses the lifecycle of projects from design to construction and maintenance, where the products can interact with the environment and its actors through various stages supporting a variety of actions. The vision and the tools and technologies required to support it are described in this pape

    The development of a tool to promote sustainability in casting processes

    Get PDF
    The drive of the manufacturing industry towards productivity, quality and profitability has been supported in the last century by the availability of relatively cheap and abundant energy sources with limited focus on the minimisation of energy and material waste. However, in the last decades, more and more stringent regulations aimed at reducing pollution and consumption of resources have been introduced worldwide and in particular in Europe. Consequently, a highly mature and competitive industry like foundry is expecting challenges that an endeavour towards sustainability can turn into significant opportunities for the future. A tool to undertake a systematic analysis of energy and material flows in the casting process is being developed. An overview of the computer program architecture is presented and its output has been validated against real-world data collected from foundries

    A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management.

    Get PDF
    OBJECTIVE:Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. MATERIALS AND METHODS:An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. RESULTS:Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application ("app"), Blip, to visualize the data. Tidepool's software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. DISCUSSION:By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. CONCLUSION:The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool's open source, cloud model for health data interoperability is applicable to other healthcare use cases

    Lean Implementation Considerations in Factory Operations of Low Volume/High Complexity Production Systems

    Get PDF
    The researchers of the Lean Aircraft Initiative developed a hypothesized lean implementation model seeking to provide its members guidance on implementing lean transitions in factory operations of low volume/high complexity production systems. The model features four phases: (1) building a lean infrastructure to support lean behavior, (2) redesigning the flow of products in the factory, (3) revamping the operations management and (4) fostering process improvement. An order of implementation is discussed and each phase has implementation steps as well. Following the development of the hypothesized lean implementation model, twelve case studies were used to test the model. This report details the model and analyzes the case studies using the model as a framework

    Lean Enablers for Systems Engineering Handout

    Get PDF
    LAI Conference handout, Boston Hyatt Harborside Hote
    • 

    corecore