1,464 research outputs found

    Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model

    Full text link
    We consider online scheduling on multiple machines for jobs arriving one-by-one with the objective of minimizing the makespan. For any number of identical parallel or uniformly related machines, we provide a competitive-ratio approximation scheme that computes an online algorithm whose competitive ratio is arbitrarily close to the best possible competitive ratio. We also determine this value up to any desired accuracy. This is the first application of competitive-ratio approximation schemes in the online-list model. The result proves the applicability of the concept in different online models. We expect that it fosters further research on other online problems

    Malleable Scheduling Beyond Identical Machines

    Get PDF
    In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the processing time depending on the number of allocated machines. Jobs are required to be executed non-preemptively and in unison, in the sense that they occupy, during their execution, the same time interval over all the machines of the allocated set. In this work, we study generalizations of malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically, we introduce a general model of malleable job scheduling, where each machine has a (possibly different) speed for each job, and the processing time of a job j on a set of allocated machines S depends on the total speed of S for j. For machines with unrelated speeds, we show that the optimal makespan cannot be approximated within a factor less than e/(e-1), unless P = NP. On the positive side, we present polynomial-time algorithms with approximation ratios 2e/(e-1) for machines with unrelated speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines. Our algorithms are based on deterministic LP rounding and result in sparse schedules, in the sense that each machine shares at most one job with other machines. We also prove lower bounds on the integrality gap of 1+phi for unrelated speeds (phi is the golden ratio) and 2 for uniform speeds and restricted assignments. To indicate the generality of our approach, we show that it also yields constant factor approximation algorithms (i) for minimizing the sum of weighted completion times; and (ii) a variant where we determine the effective speed of a set of allocated machines based on the L_p norm of their speeds

    Energy Efficient Scheduling via Partial Shutdown

    Get PDF
    Motivated by issues of saving energy in data centers we define a collection of new problems referred to as "machine activation" problems. The central framework we introduce considers a collection of mm machines (unrelated or related) with each machine ii having an {\em activation cost} of aia_i. There is also a collection of nn jobs that need to be performed, and pi,jp_{i,j} is the processing time of job jj on machine ii. We assume that there is an activation cost budget of AA -- we would like to {\em select} a subset SS of the machines to activate with total cost a(S)ā‰¤Aa(S) \le A and {\em find} a schedule for the nn jobs on the machines in SS minimizing the makespan (or any other metric). For the general unrelated machine activation problem, our main results are that if there is a schedule with makespan TT and activation cost AA then we can obtain a schedule with makespan \makespanconstant T and activation cost \costconstant A, for any Ļµ>0\epsilon >0. We also consider assignment costs for jobs as in the generalized assignment problem, and using our framework, provide algorithms that minimize the machine activation and the assignment cost simultaneously. In addition, we present a greedy algorithm which only works for the basic version and yields a makespan of 2T2T and an activation cost A(1+lnā”n)A (1+\ln n). For the uniformly related parallel machine scheduling problem, we develop a polynomial time approximation scheme that outputs a schedule with the property that the activation cost of the subset of machines is at most AA and the makespan is at most (1+Ļµ)T(1+\epsilon) T for any Ļµ>0\epsilon >0

    Performance Guarantees of Local Search for Multiprocessor Scheduling

    Get PDF
    Increasing interest has recently been shown in analyzing the worst-case behavior of local search algorithms. In particular, the quality of local optima and the time needed to find the local optima by the simplest form of local search has been studied. This paper deals with worst-case performance of local search algorithms for makespan minimization on parallel machines. We analyze the quality of the local optima obtained by iterative improvement over the jump, swap, multi-exchange, and the newly defined push neighborhoods. Finally, for the jump neighborhood we provide bounds on the number of local search steps required to find a local optimum.operations research and management science;

    An EPTAS for machine scheduling with bag-constraints

    Full text link
    Machine scheduling is a fundamental optimization problem in computer science. The task of scheduling a set of jobs on a given number of machines and minimizing the makespan is well studied and among other results, we know that EPTAS's for machine scheduling on identical machines exist. Das and Wiese initiated the research on a generalization of makespan minimization, that includes so called bag-constraints. In this variation of machine scheduling the given set of jobs is partitioned into subsets, so called bags. Given this partition a schedule is only considered feasible when on any machine there is at most one job from each bag. Das and Wiese showed that this variant of machine scheduling admits a PTAS. We will improve on this result by giving the first EPTAS for the machine scheduling problem with bag-constraints. We achieve this result by using new insights on this problem and restrictions given by the bag-constraints. We show that, to gain an approximate solution, we can relax the bag-constraints and ignore some of the restrictions. Our EPTAS uses a new instance transformation that will allow us to schedule large and small jobs independently of each other for a majority of bags. We also show that it is sufficient to respect the bag-constraint only among a constant number of bags, when scheduling large jobs. With these observations our algorithm will allow for some conflicts when computing a schedule and we show how to repair the schedule in polynomial-time by swapping certain jobs around

    Algorithms for Hierarchical and Semi-Partitioned Parallel Scheduling

    Get PDF
    We propose a model for scheduling jobs in a parallel machine setting that takes into account the cost of migrations by assuming that the processing time of a job may depend on the specific set of machines among which the job is migrated. For the makespan minimization objective, the model generalizes classical scheduling problems such as unrelated parallel machine scheduling, as well as novel ones such as semi-partitioned and clustered scheduling. In the case of a hierarchical family of machines, we derive a compact integer linear programming formulation of the problem and leverage its fractional relaxation to obtain a polynomial-time 2-approximation algorithm. Extensions that incorporate memory capacity constraints are also discussed
    • ā€¦
    corecore