94 research outputs found

    Approximation Algorithms for Problems in Makespan Minimization on Unrelated Parallel Machines

    Get PDF
    A fundamental problem in scheduling is makespan minimization on unrelated parallel machines (R||Cmax). Let there be a set J of jobs and a set M of parallel machines, where every job Jj ∈ J has processing time or length pi,j ∈ ℚ+ on machine Mi ∈ M. The goal in R||Cmax is to schedule the jobs non-preemptively on the machines so as to minimize the length of the schedule, the makespan. A ρ-approximation algorithm produces in polynomial time a feasible solution such that its objective value is within a multiplicative factor ρ of the optimum, where ρ is called its approximation ratio. The best-known approximation algorithms for R||Cmax have approximation ratio 2, but there is no ρ-approximation algorithm with ρ \u3c 3/2 for R||Cmax unless P=NP. A longstanding open problem in approximation algorithms is to reconcile this hardness gap. We take a two-pronged approach to learn more about the hardness gap of R||Cmax: (1) find approximation algorithms for special cases of R||Cmax whose approximation ratios are tight (unless P=NP); (2) identify special cases of R||Cmax that have the same 3/2-hardness bound of R||Cmax, but where the approximation barrier of 2 can be broken. This thesis is divided into four parts. The first two parts investigate a special case of R||Cmax called the graph balancing problem when every job has one of two lengths and the machines may have one of two speeds. First, we present 3/2-approximation algorithms for the graph balancing problem with one speed and two job lengths. In the second part of this thesis we give an approximation algorithm for the graph balancing problem with two speeds and two job lengths with approximation ratio (√65+7)/8 ≈ 1.88278. In the third part of the thesis we present approximation algorithms and hardness of approximation results for two problems called R||Cmax with simple job-intersection structure and R||Cmax with bounded job assignments. We conclude this thesis by presenting algorithmic and computational complexity results for a generalization of R||Cmax where J is partitioned into sets called bags, and it must be that no two jobs belonging to the same bag are scheduled on the same machine

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful

    Approximation Schemes for Machine Scheduling

    Get PDF
    In the classical problem of makespan minimization on identical parallel machines, or machine scheduling for short, a set of jobs has to be assigned to a set of machines. The jobs have a processing time and the goal is to minimize the latest finishing time of the jobs. Machine scheduling is well known to be NP-hard and thus there is no polynomial time algorithm for this problem that is guaranteed to find an optimal solution unless P=NP. There is, however, a polynomial time approximation scheme (PTAS) for machine scheduling, that is, a family of approximation algorithms with ratios arbitrarily close to one. Whether a problem admits an approximation scheme or not is a fundamental question in approximation theory. In the present work, we consider this question for several variants of machine scheduling. We study the problem where the machines are partitioned into a constant number of types and the processing time of the jobs is also dependent on the machine type. We present so called efficient PTAS (EPTAS) results for this problem and variants thereof. We show that certain cases of machine scheduling with assignment restrictions do not admit a PTAS unless P=NP. Moreover, we introduce a graph framework based on the restrictions of the jobs and use it in the design of approximation schemes for other variants. We introduce an enhanced integer programming formulation for assignment problems, show that it can be efficiently solved, and use it in the EPTAS design for variants of machine scheduling with setup times. For one of the problems, we show that there is also a PTAS in the case with uniform machines, where machines have speeds influencing the processing times of the jobs. We consider cases in which each job requires a certain amount of a shared renewable resource and the processing time is depended on the amount of resource it receives or not. We present so called asymptotic fully polynomial time approximation schemes (AFPTAS) for the problems

    Scheduling with Outliers

    Full text link
    In classical scheduling problems, we are given jobs and machines, and have to schedule all the jobs to minimize some objective function. What if each job has a specified profit, and we are no longer required to process all jobs -- we can schedule any subset of jobs whose total profit is at least a (hard) target profit requirement, while still approximately minimizing the objective function? We refer to this class of problems as scheduling with outliers. This model was initiated by Charikar and Khuller (SODA'06) on the minimum max-response time in broadcast scheduling. We consider three other well-studied scheduling objectives: the generalized assignment problem, average weighted completion time, and average flow time, and provide LP-based approximation algorithms for them. For the minimum average flow time problem on identical machines, we give a logarithmic approximation algorithm for the case of unit profits based on rounding an LP relaxation; we also show a matching integrality gap. For the average weighted completion time problem on unrelated machines, we give a constant factor approximation. The algorithm is based on randomized rounding of the time-indexed LP relaxation strengthened by the knapsack-cover inequalities. For the generalized assignment problem with outliers, we give a simple reduction to GAP without outliers to obtain an algorithm whose makespan is within 3 times the optimum makespan, and whose cost is at most (1 + \epsilon) times the optimal cost.Comment: 23 pages, 3 figure

    Exact and Heuristic Algorithms for Energy-Efficient Scheduling

    Get PDF
    The combined increase of energy demand and environmental pollution at a global scale is entailing a rethinking of the production models in sustainable terms. As a consequence, energy suppliers are starting to adopt strategies that flatten demand peaks in power plants by means of pricing policies that stimulate a change in the consumption practices of customers. A representative example is the Time-of-Use (TOU)-based tariffs policy, which encourages electricity usage at off-peak hours by means of low prices, while penalizing peak hours with higher prices. To avoid a sharp increment of the energy supply costs, manufacturing industry must carefully reschedule the production process, by shifting it towards less expensive periods. The TOU-based tariffs policy induces an implicit partitioning of the time horizon of the production into a set of time slots, each associated with a non-negative cost that becomes a part of the optimization objective. This thesis focuses on a representative bi-objective energy-efficient job scheduling problem on parallel identical machines under TOU-based tariffs by delving into the description of its inherent properties, mathematical formulations, and solution approaches. Specifically, the thesis starts by reviewing the flourishing literature on the subject, and providing a useful framework for theoreticians and practitioners. Subsequently, it describes the considered problem and investigates its theoretical properties. In the same chapter, it presents a first mathematical model for the problem, as well as a possible reformulation that exploits the structure of the solution space so as to achieve a considerable increase in compactness. Afterwards, the thesis introduces a sophisticated heuristic scheme to tackle the inherent hardness of the problem, and an exact algorithm that exploits the mathematical models. Then, it shows the computational efficiency of the presented solution approaches on a wide test benchmark. Finally, it presents a perspective on future research directions for the class of energy-efficient scheduling problems under TOU-based tariffs as a whole

    Restricted Adaptivity in Stochastic Scheduling

    Get PDF
    We consider the stochastic scheduling problem of minimizing the expected makespan on m parallel identical machines. While the (adaptive) list scheduling policy achieves an approximation ratio of 2, any (non-adaptive) fixed assignment policy has performance guarantee ?((log m)/(log log m)). Although the performance of the latter class of policies are worse, there are applications in which non-adaptive policies are desired. In this work, we introduce the two classes of ?-delay and ?-shift policies whose degree of adaptivity can be controlled by a parameter. We present a policy - belonging to both classes - which is an ?(log log m)-approximation for reasonably bounded parameters. In other words, an exponential improvement on the performance of any fixed assignment policy can be achieved when allowing a small degree of adaptivity. Moreover, we provide a matching lower bound for any ?-delay and ?-shift policy when both parameters, respectively, are in the order of the expected makespan of an optimal non-anticipatory policy

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisïŹes the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems such as rounding column-sparse LPs, makespan minimization on unrelated machines, degree-bounded spanning trees and multi-budgeted matchings
    • 

    corecore