305 research outputs found

    Learning Policies from Self-Play with Policy Gradients and MCTS Value Estimates

    Get PDF
    In recent years, state-of-the-art game-playing agents often involve policies that are trained in self-playing processes where Monte Carlo tree search (MCTS) algorithms and trained policies iteratively improve each other. The strongest results have been obtained when policies are trained to mimic the search behaviour of MCTS by minimising a cross-entropy loss. Because MCTS, by design, includes an element of exploration, policies trained in this manner are also likely to exhibit a similar extent of exploration. In this paper, we are interested in learning policies for a project with future goals including the extraction of interpretable strategies, rather than state-of-the-art game-playing performance. For these goals, we argue that such an extent of exploration is undesirable, and we propose a novel objective function for training policies that are not exploratory. We derive a policy gradient expression for maximising this objective function, which can be estimated using MCTS value estimates, rather than MCTS visit counts. We empirically evaluate various properties of resulting policies, in a variety of board games.Comment: Accepted at the IEEE Conference on Games (CoG) 201

    Expert iteration

    Get PDF
    In this thesis, we study how reinforcement learning algorithms can tackle classical board games without recourse to human knowledge. Specifically, we develop a framework and algorithms which learn to play the board game Hex starting from random play. We first describe Expert Iteration (ExIt), a novel reinforcement learning framework which extends Modified Policy Iteration. ExIt explicitly decomposes the reinforcement learning problem into two parts: planning and generalisation. A planning algorithm explores possible move sequences starting from a particular position to find good strategies from that position, while a parametric function approximator is trained to predict those plans, generalising to states not yet seen. Subsequently, planning is improved by using the approximated policy to guide search, increasing the strength of new plans. This decomposition allows ExIt to combine the benefits of both planning methods and function approximation methods. We demonstrate the effectiveness of the ExIt paradigm by implementing ExIt with two different planning algorithms. First, we develop a version based on Monte Carlo Tree Search (MCTS), a search algorithm which has been successful both in specific games, such as Go, Hex and Havannah, and in general game playing competitions. We then develop a new planning algorithm, Policy Gradient Search (PGS), which uses a model-free reinforcement learning algorithm for online planning. Unlike MCTS, PGS does not require an explicit search tree. Instead PGS uses function approximation within a single search, allowing it to be applied to problems with larger branching factors. Both MCTS-ExIt and PGS-ExIt defeated MoHex 2.0 - the most recent Hex Olympiad winner to be open sourced - in 9 × 9 Hex. More importantly, whereas MoHex makes use of many Hex-specific improvements and knowledge, all our programs were trained tabula rasa using general reinforcement learning methods. This bodes well for ExIt’s applicability to both other games and real world decision making problems

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures
    • …
    corecore