177 research outputs found

    MM Algorithms for Minimizing Nonsmoothly Penalized Objective Functions

    Full text link
    In this paper, we propose a general class of algorithms for optimizing an extensive variety of nonsmoothly penalized objective functions that satisfy certain regularity conditions. The proposed framework utilizes the majorization-minimization (MM) algorithm as its core optimization engine. The resulting algorithms rely on iterated soft-thresholding, implemented componentwise, allowing for fast, stable updating that avoids the need for any high-dimensional matrix inversion. We establish a local convergence theory for this class of algorithms under weaker assumptions than previously considered in the statistical literature. We also demonstrate the exceptional effectiveness of new acceleration methods, originally proposed for the EM algorithm, in this class of problems. Simulation results and a microarray data example are provided to demonstrate the algorithm's capabilities and versatility.Comment: A revised version of this paper has been published in the Electronic Journal of Statistic

    Algorithms for nonnegative matrix factorization with the beta-divergence

    Get PDF
    This paper describes algorithms for nonnegative matrix factorization (NMF) with the beta-divergence (beta-NMF). The beta-divergence is a family of cost functions parametrized by a single shape parameter beta that takes the Euclidean distance, the Kullback-Leibler divergence and the Itakura-Saito divergence as special cases (beta = 2,1,0, respectively). The proposed algorithms are based on a surrogate auxiliary function (a local majorization of the criterion function). We first describe a majorization-minimization (MM) algorithm that leads to multiplicative updates, which differ from standard heuristic multiplicative updates by a beta-dependent power exponent. The monotonicity of the heuristic algorithm can however be proven for beta in (0,1) using the proposed auxiliary function. Then we introduce the concept of majorization-equalization (ME) algorithm which produces updates that move along constant level sets of the auxiliary function and lead to larger steps than MM. Simulations on synthetic and real data illustrate the faster convergence of the ME approach. The paper also describes how the proposed algorithms can be adapted to two common variants of NMF : penalized NMF (i.e., when a penalty function of the factors is added to the criterion function) and convex-NMF (when the dictionary is assumed to belong to a known subspace).Comment: \`a para\^itre dans Neural Computatio

    The MM Alternative to EM

    Full text link
    The EM algorithm is a special case of a more general algorithm called the MM algorithm. Specific MM algorithms often have nothing to do with missing data. The first M step of an MM algorithm creates a surrogate function that is optimized in the second M step. In minimization, MM stands for majorize--minimize; in maximization, it stands for minorize--maximize. This two-step process always drives the objective function in the right direction. Construction of MM algorithms relies on recognizing and manipulating inequalities rather than calculating conditional expectations. This survey walks the reader through the construction of several specific MM algorithms. The potential of the MM algorithm in solving high-dimensional optimization and estimation problems is its most attractive feature. Our applications to random graph models, discriminant analysis and image restoration showcase this ability.Comment: Published in at http://dx.doi.org/10.1214/08-STS264 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore