80,078 research outputs found

    On the Voting Time of the Deterministic Majority Process

    Get PDF
    In the deterministic binary majority process we are given a simple graph where each node has one out of two initial opinions. In every round, every node adopts the majority opinion among its neighbors. By using a potential argument first discovered by Goles and Olivos (1980), it is known that this process always converges in O(∣E∣)O(|E|) rounds to a two-periodic state in which every node either keeps its opinion or changes it in every round. It has been shown by Frischknecht, Keller, and Wattenhofer (2013) that the O(∣E∣)O(|E|) bound on the convergence time of the deterministic binary majority process is indeed tight even for dense graphs. However, in many graphs such as the complete graph, from any initial opinion assignment, the process converges in just a constant number of rounds. By carefully exploiting the structure of the potential function by Goles and Olivos (1980), we derive a new upper bound on the convergence time of the deterministic binary majority process that accounts for such exceptional cases. We show that it is possible to identify certain modules of a graph GG in order to obtain a new graph GΔG^\Delta with the property that the worst-case convergence time of GΔG^\Delta is an upper bound on that of GG. Moreover, even though our upper bound can be computed in linear time, we show that, given an integer kk, it is NP-hard to decide whether there exists an initial opinion assignment for which it takes more than kk rounds to converge to the two-periodic state.Comment: full version of brief announcement accepted at DISC'1

    Hierarchical probabilistic macromodeling for QCA circuits

    Get PDF
    With the goal of building an hierarchical design methodology for quantum-dot cellular automata (QCA) circuits, we put forward a novel, theoretically sound, method for abstracting the behavior of circuit components in QCA circuit, such as majority logic, lines, wire-taps, cross-overs, inverters, and corners, using macromodels. Recognizing that the basic operation of QCA is probabilistic in nature, we propose probabilistic macromodels for standard QCA circuit elements based on conditional probability characterization, defined over the output states given the input states. Any circuit model is constructed by chaining together the individual logic element macromodels, forming a Bayesian network, defining a joint probability distribution over the whole circuit. We demonstrate three uses for these macromodel-based circuits. First, the probabilistic macromodels allow us to model the logical function of QCA circuits at an abstract level - the "circuit" level - above the current practice of layout level in a time and space efficient manner. We show that the circuit level model is orders of magnitude faster and requires less space than layout level models, making the design and testing of large QCA circuits efficient and relegating the costly full quantum-mechanical simulation of the temporal dynamics to a later stage in the design process. Second, the probabilistic macromodels abstract crucial device level characteristics such as polarization and low-energy error state configurations at the circuit level. We demonstrate how this macromodel-based circuit level representation can be used to infer the ground state probabilities, i.e., cell polarizations, a crucial QCA parameter. This allows us to study the thermal behavior of QCA circuits at a higher level of abstraction. Third, we demonstrate the use of these macromodels for error analysis. We show that low-energy state configurations of the macromodel circuit match those of the layout level, thus allowing us to isolate weak p- oints in circuits design at the circuit level itsel
    • 

    corecore