270 research outputs found

    MaizeGDB: curation and outreach go hand-in-hand

    Get PDF
    First released in 1991 with the name MaizeDB, the Maize Genetics and Genomics Database, now MaizeGDB, celebrates its 20th anniversary this year. MaizeGDB has transitioned from a focus on comprehensive curation of the literature, genetic maps and stocks to a paradigm that accommodates the recent release of a reference maize genome sequence, multiple diverse maize genomes and sequence-based gene expression data sets. The MaizeGDB Team is relatively small, and relies heavily on the research community to provide data, nomenclature standards and most importantly, to recommend future directions, priorities and strategies. Key aspects of MaizeGDB's intimate interaction with the community are the co-location of curators with maize research groups in multiple locations across the USA as well as coordination with MaizeGDB’s close partner, the Maize Genetics Cooperation—Stock Center. In this report, we describe how the MaizeGDB Team currently interacts with the maize research community and our plan for future interactions that will support updates to the functional and structural annotation of the B73 reference genome

    MaizeGDB's new data types, resources and activities

    Get PDF
    MaizeGDB is the Maize Genetics and Genomics Database. Available at MaizeGDB are diverse data that support maize research including maps, gene product information, loci and their various alleles, phenotypes (both naturally occurring and as a result of directed mutagenesis), stocks, sequences, molecular markers, references and contact information for maize researchers worldwide. Also available through MaizeGDB are various community support service bulletin boards including the Editorial Board's list of high-impact papers, information about the Annual Maize Genetics Conference and the Jobs board where employment opportunities are posted. Reported here are data updates, improvements to interfaces and changes to standard operating procedures that have been made during the past 2 years. MaizeGDB is freely available and can be accessed online at

    MaizeGDB becomes ‘sequence-centric’

    Get PDF
    MaizeGDB is the maize research community’s central repository for genetic and genomic information about the crop plant and research model Zea mays ssp. mays. The MaizeGDB team endeavors to meet research needs as they evolve based on researcher feedback and guidance. Recent work has focused on better integrating existing data with sequence information as it becomes available for the B73, Mo17 and Palomero Toluqueño genomes. Major endeavors along these lines include the implementation of a genome browser to graphically represent genome sequences; implementation of POPcorn, a portal ancillary to MaizeGDB that offers access to independent maize projects and will allow BLAST similarity searches of participating projects’ data sets from a single point; and a joint MaizeGDB/PlantGDB project to involve the maize community in genome annotation. In addition to summarizing recent achievements and future plans, this article also discusses specific examples of community involvement in setting priorities and design aspects of MaizeGDB, which should be of interest to other database and resource providers seeking to better engage their users. MaizeGDB is accessible online at http://www.maizegdb.org

    POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data

    Get PDF
    The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time—sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorn's utility are provided herein

    Choosing a genome browser for a Model Organism Database: surveying the Maize community

    Get PDF
    As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly

    qTeller: a tool for comparative multi-genomic gene expression analysis

    Get PDF
    Motivation: Over the last decade, RNA-Seq whole-genome sequencing has become a widely used method for measuring and understanding transcriptome-level changes in gene expression. Since RNA-Seq is relatively inexpensive, it can be used on multiple genomes to evaluate gene expression across many different conditions, tissues and cell types. Although many tools exist to map and compare RNA-Seq at the genomics level, few web-based tools are dedicated to making data generated for individual genomic analysis accessible and reusable at a gene-level scale for comparative analysis between genes, across different genomes and meta-analyses. Results: To address this challenge, we revamped the comparative gene expression tool qTeller to take advantage of the growing number of public RNA-Seq datasets. qTeller allows users to evaluate gene expression data in a defined genomic interval and also perform two-gene comparisons across multiple user-chosen tissues. Though previously unpublished, qTeller has been cited extensively in the scientific literature, demonstrating its importance to researchers. Our new version of qTeller now supports multiple genomes for intergenomic comparisons, and includes capabilities for both mRNA and protein abundance datasets. Other new features include support for additional data formats, modernized interface and back-end database and an optimized framework for adoption by other organisms’ databases. Availability and implementation: The source code for qTeller is open-source and available through GitHub (https:// github.com/Maize-Genetics-and-Genomics-Database/qTeller). A maize instance of qTeller is available at the Maize Genetics and Genomics database (MaizeGDB) (https://qteller.maizegdb.org/), where we have mapped over 200 unique datasets from GenBank across 27 maize genomes

    Genes Identified by Visible Mutant Phenotypes Show Increased Bias toward One of Two Subgenomes of Maize

    Get PDF
    Not all genes are created equal. Despite being supported by sequence conservation and expression data, knockout homozygotes of many genes show no visible effects, at least under laboratory conditions. We have identified a set of maize (Zea mays L.) genes which have been the subject of a disproportionate share of publications recorded at MaizeGDB. We manually anchored these “classical” maize genes to gene models in the B73 reference genome, and identified syntenic orthologs in other grass genomes. In addition to proofing the most recent version 2 maize gene models, we show that a subset of these genes, those that were identified by morphological phenotype prior to cloning, are retained at syntenic locations throughout the grasses at much higher levels than the average expressed maize gene, and are preferentially found on the maize1 subgenome even with a duplicate copy is still retained on the opposite subgenome. Maize1 is the subgenome that experienced less gene loss following the whole genome duplication in maize lineage 5–12 million years ago and genes located on this subgenome tend to be expressed at higher levels in modern maize. Links to the web based software that supported our syntenic analyses in the grasses should empower further research and support teaching involving the history of maize genetic research. Our findings exemplify the concept of “grasses as a single genetic system,” where what is learned in one grass may be applied to another

    The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations

    Get PDF
    The Plant Ontology Consortium (POC, http://www.plantontology.org) is a collaborative effort among model plant genome databases and plant researchers that aims to create, maintain and facilitate the use of a controlled vocabulary (ontology) for plants. The ontology allows users to ascribe attributes of plant structure (anatomy and morphology) and developmental stages to data types, such as genes and phenotypes, to provide a semantic framework to make meaningful cross-species and database comparisons. The POC builds upon groundbreaking work by the Gene Ontology Consortium (GOC) by adopting and extending the GOC's principles, existing software and database structure. Over the past year, POC has added hundreds of ontology terms to associate with thousands of genes and gene products from Arabidopsis, rice and maize, which are available through a newly updated web-based browser (http://www.plantontology.org/amigo/go.cgi) for viewing, searching and querying. The Consortium has also implemented new functionalities to facilitate the application of PO in genomic research and updated the website to keep the contents current. In this report, we present a brief description of resources available from the website, changes to the interfaces, data updates, community activities and future enhancement
    • 

    corecore