180 research outputs found

    An Overview of Parallel Symmetric Cipher of Messages

    Get PDF
    مقدمة: على الرغم من التطورات الهامة في الاتصالات والتكنولوجيا، فقد أثبتت حماية البيانات نفسها كواحدة من أكبر الاهتمامات. يجب تشفير البيانات من أجل الارتباط بشكل آمن وسريع من خلال نقل البيانات التكنولوجية على شبكة الإنترنت. يمكن تعريف عملية التشفير بانها تحويل النص العادي إلى نص مشفر لا يمكن قراءته أو تغييره بواسطة الأشخاص المؤذيين.            طرق العمل: من أجل الحفاظ على الدرجة المطلوبة من الأمان ، استغرقت كل من عمليات تحليل التشفير وفك التشفير وقتًا طويلاً. ومع ذلك, من أجل تقليل مقدار الوقت المطلوب لإكمال عمليات التشفير وفك التشفير، طبق العديد من الباحثين طريقة التشفير بطريقة موازية. لقد كشف البحث الذي تم إجراؤه حول المشكلة عن العديد من الإجابات المحتملة. استخدم الباحثون التوازي لتحسين إنتاجية خوارزمياتهم، مما سمح لهم بتحقيق مستويات أداء أعلى في خوارزمية التشفير.                             النتائج: أظهرت الأبحاث الحديثة حول تقنيات التشفير المتوازي أن وحدات معالجة الرسومات (GPUs) تعمل بشكل أفضل من الأنظمة الأساسية المتوازية الأخرى عند مقارنة مستويات أداء التشفير.   الاستنتاجات: لإجراء بحث مقارنة حول أهم خوارزميات التشفير المتوازية من حيث فعالية أمن البيانات وطول المفتاح والتكلفة والسرعة، من بين أمور أخرى. تستعرض هذه الورقة العديد من الخوارزميات المتوازية الهامة المستخدمة في تشفير البيانات وفك تشفيرها في جميع التخصصات. ومع ذلك، يجب النظر في معايير أخرى لإظهار مصداقية أي تشفير. تعتبر اختبارات العشوائية مهمة جدًا لاكتشافها وتم تسليط الضوء عليها في هذه الدراسة.                                                              Background: Despite significant developments in communications and technology, data protection has established itself as one of the biggest concerns. The data must be encrypted in order to link securely, quickly through web-based technological data transmission. Transforming plain text into ciphered text that cannot be read or changed by malicious people is the process of encryption. Materials and Methods: In order to maintain the required degree of security, both the cryptanalysis and decryption operations took a significant amount of time. However, in order to cut down on the amount of time required for the encryption and decryption operations to be completed, several researchers implemented the cryptography method in a parallel fashion. The research that has been done on the problem has uncovered several potential answers. Researchers used parallelism to improve the throughput of their algorithms, which allowed them to achieve higher performance levels on the encryption algorithm. Results: Recent research on parallel encryption techniques has shown that graphics processing units (GPUs) perform better than other parallel platforms when comparing their levels of encryption performance. Conclusion: To carry out comparison research on the most significant parallel crypto algorithms in terms of data security efficacy, key length, cost, and speed, among other things. This paper reviews various significant parallel algorithms used for data encryption and decryption in all disciplines. However, other criteria must be considered in order to show the trustworthiness of any encryption. Randomness tests are very important to discover and are highlighted in this study

    Evaluation of Image Cryptography by Using Secret Session Key and SF Algorithm

    Get PDF
    In the unreliable domain of data communication, safeguarding information from unauthorized access is imperative. Given the widespread application of images across various fields, ensuring the confidentiality of image data holds paramount importance. This study centers on the session keys concept, addressing the challenge of key exchange between communicating parties through the development of a random-number generator based on the Linear Feedback Shift Register. Both encryption and decryption hinge on the Secure Force algorithm, supported by a generator. The proposed system outlined in this paper focuses on three key aspects. First, it addresses the generation of secure and randomly generated symmetric encryption keys. Second, it involves the ciphering of the secret image using the SF algorithm. Last, it deals with the extraction of the image by deciphering its encrypted version. The system’s performance is evaluated using image quality metrics, including histograms, peak signal-to-noise ratio, mean square error, normalized correlation, and normalized absolute error (NAE). These metrics provide insights into both encrypted and decrypted images, analyzing the extent to which the system preserves image quality. This assessment underscores the system’s capability to safeguard and maintain the confidentiality of images during data transmission

    Current implementation of advance encryption standard (AES) S-Box

    Get PDF
    Although the attack on cryptosystem is still not severe, the development of the scheme is stillongoing especially for the design of S-Box. Two main approach has beenused, which areheuristic method and algebraic method. Algebraic method as in current AES implementationhas been proven to be the most secure S-Box design to date. This review paper willconcentrate on two kinds of method of constructing AES S-Box, which are algebraic approachand heuristic approach. The objective is to review a method of constructing S-Box, which arecomparable or close to the original construction of AES S-Box especially for the heuristicapproach. Finally, all the listed S-Boxes from these two methods will be compared in terms oftheir security performance which is nonlinearity and differential uniformity of the S-Box. Thefinding may offer the potential approach to develop a new S-Box that is better than theoriginal one.Keywords: block cipher; AES; S-Bo

    Cellular automata for dynamic S-boxes in cryptography.

    Get PDF
    In today\u27s world of private information and mass communication, there is an ever increasing need for new methods of maintaining and protecting privacy and integrity of information. This thesis attempts to combine the chaotic world of cellular automata and the paranoid world of cryptography to enhance the S-box of many Substitution Permutation Network (SPN) ciphers, specifically Rijndael/AES. The success of this enhancement is measured in terms of security and performance. The results show that it is possible to use Cellular Automata (CA) to enhance the security of an 8-bit S-box by further randomizing the structure. This secure use of CA to scramble the S-box, removes the 9-term algebraic expression [20] [21] that typical Galois generated S-boxes share. This cryptosystem securely uses a Margolis class, partitioned block, uniform gas, cellular automata to create unique S-boxes for each block of data to be processed. The system improves the base Rijndael algorithm in the following ways. First, it utilizes a new S-box for each block of data. This effectively limits the amount of data that can be gathered for statistical analysis to the blocksize being used. Secondly, the S-boxes are not stored in the compiled binary, which protects against an S-box Blanking [22] attack. Thirdly, the algebraic expression hidden within each galois generated S-box is destroyed after one CA generation, which also modifies key expansion results. Finally, the thesis succeeds in combining Cellular Automata and Cryptography securely, though it is not the most efficient solution to dynamic S-boxes

    Small & Secure Hardware Crypto Core and Program Recognition using Side-Channels

    Get PDF
    In the era of small devices connected to each other and to the cloud, security in both hardware and software is of high importance. This work takes on the market demands of the Internet of Things devices and proposes the smallest hardware crypto core that is immune to side-channel attacks, improving the previous by almost 15%. On the software side, this work takes a first step into proving that by simply measuring certain hardware performance counters, or by monitoring certain hardware resources, it is possible to accurately identify codes during their execution. Because of their high criticality, this work uses crypto codes and tries to identify them using machine learning techniques. In a simulated environment, an accuracy of over 90% is achieved in classifying crypto algorithms

    Evaluation of Image Cryptography by Using Secret Session Key and SF Algorithm

    Get PDF
    In the unreliable domain of data communication, safeguarding information from unauthorized access is imperative. Given the widespread application of images across various fields, ensuring the confidentiality of image data holds paramount importance. This study centers on the session keys concept, addressing the challenge of key exchange between communicating parties through the development of a random-number generator based on the Linear Feedback Shift Register. Both encryption and decryption hinge on the Secure Force algorithm, supported by a generator. The proposed system outlined in this paper focuses on three key aspects. First, it addresses the generation of secure and randomly generated symmetric encryption keys. Second, it involves the ciphering of the secret image using the SF algorithm. Last, it deals with the extraction of the image by deciphering its encrypted version. The system’s performance is evaluated using image quality metrics, including histograms, peak signal-to-noise ratio, mean square error, normalized correlation, and normalized absolute error (NAE). These metrics provide insights into both encrypted and decrypted images, analyzing the extent to which the system preserves image quality. This assessment underscores the system’s capability to safeguard and maintain the confidentiality of images during data transmission

    NEW SECURE SOLUTIONS FOR PRIVACY AND ACCESS CONTROL IN HEALTH INFORMATION EXCHANGE

    Get PDF
    In the current digital age, almost every healthcare organization (HCO) has moved from storing patient health records on paper to storing them electronically. Health Information Exchange (HIE) is the ability to share (or transfer) patients’ health information between different HCOs while maintaining national security standards like the Health Insurance Portability and Accountability Act (HIPAA) of 1996. Over the past few years, research has been conducted to develop privacy and access control frameworks for HIE systems. The goal of this dissertation is to address the privacy and access control concerns by building practical and efficient HIE frameworks to secure the sharing of patients’ health information. The first solution allows secure HIE among different healthcare providers while focusing primarily on the privacy of patients’ information. It allows patients to authorize a certain type of health information to be retrieved, which helps prevent any unintentional leakage of information. The privacy solution also provides healthcare providers with the capability of mutual authentication and patient authentication. It also ensures the integrity and auditability of health information being exchanged. The security and performance study for the first protocol shows that it is efficient for the purpose of HIE and offers a high level of security for such exchanges. The second framework presents a new cloud-based protocol for access control to facilitate HIE across different HCOs, employing a trapdoor hash-based proxy signature in a novel manner to enable secure (authenticated and authorized) on-demand access to patient records. The proposed proxy signature-based scheme provides an explicit mechanism for patients to authorize the sharing of specific medical information with specific HCOs, which helps prevent any undesired or unintentional leakage of health information. The scheme also ensures that such authorizations are authentic with respect to both the HCOs and the patient. Moreover, the use of proxy signatures simplifies security auditing and the ability to obtain support for investigations by providing non-repudiation. Formal definitions, security specifications, and a detailed theoretical analysis, including correctness, security, and performance of both frameworks are provided which demonstrate the improvements upon other existing HIE systems
    corecore