137,575 research outputs found

    Dynamic Planar Embeddings of Dynamic Graphs

    Full text link
    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the face boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping components that are connected to the rest of the graph by at most two vertices. Given vertices u,vu,v, linkable(u,v)(u,v) decides whether uu and vv are linkable in the current embedding, and if so, returns a list of suggestions for the placement of (u,v)(u,v) in the embedding. For non-linkable vertices u,vu,v, we define a new query, one-flip-linkable(u,v)(u,v) providing a suggestion for a flip that will make them linkable if one exists. We support all updates and queries in O(log2n^2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common Euler tour.Comment: Announced at STACS'1

    Fully Dynamic Connectivity in O(logn(loglogn)2)O(\log n(\log\log n)^2) Amortized Expected Time

    Full text link
    Dynamic connectivity is one of the most fundamental problems in dynamic graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure with O(logn(loglogn)2)O(\log n(\log\log n)^2) amortized expected update time and O(logn/logloglogn)O(\log n/\log\log\log n) worst case query time, which comes very close to the cell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup (2011)

    Agglomerative Clustering of Growing Squares

    Get PDF
    We study an agglomerative clustering problem motivated by interactive glyphs in geo-visualization. Consider a set of disjoint square glyphs on an interactive map. When the user zooms out, the glyphs grow in size relative to the map, possibly with different speeds. When two glyphs intersect, we wish to replace them by a new glyph that captures the information of the intersecting glyphs. We present a fully dynamic kinetic data structure that maintains a set of nn disjoint growing squares. Our data structure uses O(n(lognloglogn)2)O(n (\log n \log\log n)^2) space, supports queries in worst case O(log3n)O(\log^3 n) time, and updates in O(log7n)O(\log^7 n) amortized time. This leads to an O(nα(n)log7n)O(n\alpha(n)\log^7 n) time algorithm to solve the agglomerative clustering problem. This is a significant improvement over the current best O(n2)O(n^2) time algorithms.Comment: 14 pages, 7 figure

    Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

    Get PDF
    We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted directed graphs. Most importantly, we give a new deterministic incremental algorithm for the problem that handles updates in O~(mn^(4/3) log{W}/epsilon) total time (where the edge weights are from [1,W]) and explicitly maintains a (1+epsilon)-approximate distance matrix. For a fixed epsilon>0, this is the first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose update time is o(n^2) regardless of the number of edges. Furthermore, we also show how to improve the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et al. STOC\u2702, Bernstein STOC\u2713] from Monte Carlo randomized to Las Vegas randomized without increasing the running time bounds (with respect to the O~(*) notation). Our results are obtained by giving new algorithms for the problem of dynamically maintaining hubs, that is a set of O~(n/d) vertices which hit a shortest path between each pair of vertices, provided it has hop-length Omega(d). We give new subquadratic deterministic and Las Vegas algorithms for maintenance of hubs under either edge insertions or deletions

    Faster Fully-Dynamic Minimum Spanning Forest

    Full text link
    We give a new data structure for the fully-dynamic minimum spanning forest problem in simple graphs. Edge updates are supported in O(log4n/loglogn)O(\log^4n/\log\log n) amortized time per operation, improving the O(log4n)O(\log^4n) amortized bound of Holm et al. (STOC'98, JACM'01). We assume the Word-RAM model with standard instructions.Comment: 13 pages, 2 figure

    The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree

    Get PDF
    In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an nn-vertex graph G=(V,E,w)G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set SVS \subseteq V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n)o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)(6+\varepsilon)-approximate Steiner tree of a general graph in O~(nlogD)\tilde{O}(\sqrt{n} \log D) time per terminal addition or removal. Here, DD denotes the stretch of the metric induced by GG. For planar graphs we achieve the same running time and the approximation ratio of (2+ε)(2+\varepsilon). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)(4+\varepsilon)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.Comment: Full version of the paper accepted to STOC'1
    corecore