14,170 research outputs found

    Building XML data warehouse based on frequent patterns in user queries

    Get PDF
    [Abstract]: With the proliferation of XML-based data sources available across the Internet, it is increasingly important to provide users with a data warehouse of XML data sources to facilitate decision-making processes. Due to the extremely large amount of XML data available on web, unguided warehousing of XML data turns out to be highly costly and usually cannot well accommodate the users’ needs in XML data acquirement. In this paper, we propose an approach to materialize XML data warehouses based on frequent query patterns discovered from historical queries issued by users. The schemas of integrated XML documents in the warehouse are built using these frequent query patterns represented as Frequent Query Pattern Trees (FreqQPTs). Using hierarchical clustering technique, the integration approach in the data warehouse is flexible with respect to obtaining and maintaining XML documents. Experiments show that the overall processing of the same queries issued against the global schema become much efficient by using the XML data warehouse built than by directly searching the multiple data sources

    SBML models and MathSBML

    Get PDF
    MathSBML is an open-source, freely-downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a toolneutral,computer-readable format for representing models of biochemical reaction networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, a standard medium for representing and transporting data that is widely supported on the internet as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication and survival. In addition to MathSBML, a number of other tools that support SBML model examination and manipulation are provided on the sbml.org website, including libSBML, a C/C++ library for reading SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica as well as providing an API for model manipulation and simulation

    Ensuring Query Compatibility with Evolving XML Schemas

    Get PDF
    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    SMIL State: an architecture and implementation for adaptive time-based web applications

    Get PDF
    In this paper we examine adaptive time-based web applications (or presentations). These are interactive presentations where time dictates which parts of the application are presented (providing the major structuring paradigm), and that require interactivity and other dynamic adaptation. We investigate the current technologies available to create such presentations and their shortcomings, and suggest a mechanism for addressing these shortcomings. This mechanism, SMIL State, can be used to add user-defined state to declarative time-based languages such as SMIL or SVG animation, thereby enabling the author to create control flows that are difficult to realize within the temporal containment model of the host languages. In addition, SMIL State can be used as a bridging mechanism between languages, enabling easy integration of external components into the web application. Finally, SMIL State enables richer expressions for content control. This paper defines SMIL State in terms of an introductory example, followed by a detailed specification of the State model. Next, the implementation of this model is discussed. We conclude with a set of potential use cases, including dynamic content adaptation and delayed insertion of custom content such as advertisements. © 2009 Springer Science+Business Media, LLC

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets
    • …
    corecore