8,840 research outputs found

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Exploratory review on network firewall architectures and their appplications

    Get PDF

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VM’s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ‘privilege escalation’ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    Systemic Risk and Vulnerability Analysis of Multi-cloud Environments

    Full text link
    With the increasing use of multi-cloud environments, security professionals face challenges in configuration, management, and integration due to uneven security capabilities and features among providers. As a result, a fragmented approach toward security has been observed, leading to new attack vectors and potential vulnerabilities. Other research has focused on single-cloud platforms or specific applications of multi-cloud environments. Therefore, there is a need for a holistic security and vulnerability assessment and defense strategy that applies to multi-cloud platforms. We perform a risk and vulnerability analysis to identify attack vectors from software, hardware, and the network, as well as interoperability security issues in multi-cloud environments. Applying the STRIDE and DREAD threat modeling methods, we present an analysis of the ecosystem across six attack vectors: cloud architecture, APIs, authentication, automation, management differences, and cybersecurity legislation. We quantitatively determine and rank the threats in multi-cloud environments and suggest mitigation strategies.Comment: 27 pages, 9 figure

    Security hardened remote terminal units for SCADA networks.

    Get PDF
    Remote terminal units (RTUs) are perimeter supervisory control and data acquisition (SCADA) devices that measure and control actual physical devices. Cyber security was largely ignored in SCADA for many years, and the cyber security issues that now face SCADA and DCS, specifically RTU security, are investigated in this research. This dissertation presents a new role based access control model designed specifically for RTUs and process control. The model is developed around the process control specific data element called a point, and point operations. The model includes: assignment constraints that limit the RTU operations that a specific role can be assigned and activation constraints that allow a security administrator to specify conditions when specific RTU roles or RTU permissions cannot be used. RTU enforcement of the new access control model depends on, and is supported by, the protection provided by an RTU\u27s operating system. This dissertation investigates two approaches for using minimal kernels to reduce potential vulnerabilities in RTU protection enforcement and create a security hardened RTU capable of supporting the new RTU access control model. The first approach is to reduce a commercial OS kernel to only those components needed by the RTU, removing any known or unknown vulnerabilities contained in the eliminated code and significantly reducing the size of the kernel. The second approach proposes using a microkernel that supports partitioning as the basis for an RTU specific operating system which isolates network related RTU software, the RTU attack surface, from critical RTU operational software such as control algorithms and analog and digital input and output. In experimental analysis of a prototype hardened RTU connected to real SCADA hardware, a reduction of over 50% was obtained in reducing a 2.4 Linux kernel to run on actual RTU hardware. Functional testing demonstrated that different users were able to carryout assigned tasks with the limited set of permissions provided by the security hardened RTU and a series of simulated insider attacks were prevented by the RTU role based access control system. Analysis of communication times indicated response times would be acceptable for many SCADA and DCS application areas. Investigation of a partitioning microkernel for an RTU identified the L4 microkernel as an excellent candidate. Experimental evaluation of L4 on real hardware found the IPC overhead for simulated critical RTU operations protected by L4 partitioning to be sufficiently small to warrant continued investigation of the approach

    DYNAMIC DATA EXFILTRATION OVER COMMON PROTOCOLS VIA SOCKET LAYER PROTOCOL CUSTOMIZATION

    Get PDF
    Obfuscated data exfiltration perpetrated by malicious actors presents a significant threat to organizations looking to protect sensitive data. Socket layer protocol customization presents the potential to enhance obfuscated data exfiltration by providing a protocol-agnostic means of embedding targeted data within application payloads of established socket connections. Fully evaluating and characterizing this technique will serve as an important step in the development of suitable mitigations. This thesis evaluated the performance of this method of data exfiltration through experimentation to determine its viability and identify its limitations. The evaluation assessed the effectiveness of exfiltration via socket layer customization with various application protocols and characterized its use to determine the most suitable protocols. Basic host-based and network-based security controls were introduced to test the exfiltration method’s ability to bypass typical security controls implemented to prevent data exfiltration. The experimentation results indicate that this exfiltration method is both viable and applicable across multiple application protocols. It proved flexible enough in its design and configuration to bypass basic host-based access controls and general network intrusion prevention system packet inspection. Deep packet inspection was identified as a potential solution; however, the required inspection and filtering granularity might make implementation infeasible.Office of Naval Research, Arlington, VA 22203-1995Outstanding ThesisPetty Officer First Class, United States NavyApproved for public release. Distribution is unlimited

    Policy Conflict Management in Distributed SDN Environments

    Get PDF
    abstract: The ease of programmability in Software-Defined Networking (SDN) makes it a great platform for implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. However, implementing security solutions in such an environment is fraught with policy conflicts and consistency issues with the hardness of this problem being affected by the distribution scheme for the SDN controllers. In this dissertation, a formalism for flow rule conflicts in SDN environments is introduced. This formalism is realized in Brew, a security policy analysis framework implemented on an OpenDaylight SDN controller. Brew has comprehensive conflict detection and resolution modules to ensure that no two flow rules in a distributed SDN-based cloud environment have conflicts at any layer; thereby assuring consistent conflict-free security policy implementation and preventing information leakage. Techniques for global prioritization of flow rules in a decentralized environment are presented, using which all SDN flow rule conflicts are recognized and classified. Strategies for unassisted resolution of these conflicts are also detailed. Alternately, if administrator input is desired to resolve conflicts, a novel visualization scheme is implemented to help the administrators view the conflicts in an aesthetic manner. The correctness, feasibility and scalability of the Brew proof-of-concept prototype is demonstrated. Flow rule conflict avoidance using a buddy address space management technique is studied as an alternate to conflict detection and resolution in highly dynamic cloud systems attempting to implement an SDN-based Moving Target Defense (MTD) countermeasures.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Examining Correctional Leadership Styles That Encourage Cooperative Compliance From Federal Offenders

    Get PDF
    Since its inception in 1930, the Federal Bureau of Prisons has experienced tremendous growth in its inmate population. Concluding 1930 with 14 federal prisons, the Bureau of Prisons now maintains 122 federal prisons, and is accountable for over 180,000 federal offenders within federal prisons walls and within contracted correctional centers. The federal inmate population has also grown in diversity, and training offered by the Bureau of Prisons to its employees has not transformed in a manner that addresses the rise in offender diversity. Officers are left to independently devise various leadership styles to meet the needs of the organization. Bureau of Prison refresher training directs correctional staff to be consistent in methodologies regarding inmate management, but since correctional officers are developing individualized leadership styles of what works, leadership uniformity and best practices are not formally identified or administered. Literature involving correctional officer leadership varies regarding the sample of perceived leaders and much of the information surrounding successful leadership gravitates toward specific leadership traits. The purpose of this phenomenological study was to examine leadership styles used by federal correctional officers as they try to influence cooperative compliance in their facilities. The identification of the most effective leadership styles used by correctional officers provides opportunities for the development of leadership training for correctional staff, increases the possibility for more effective methods of managing inmate behavior, and may strengthen correctional officer safety. Six work-supervisors, from Western regional federal prisons within the United States, who hold positions that consist of skill-set trainer and correctional officer, were used for this inquiry of effective leadership styles. Eight leadership theories were used to examine the leadership styles of each work-supervisor. These leadership theories included: (a) Situational Leadership, (b) Path Goal Leadership, (c) Leader Member Exchange, (d) Transformational Leadership, (e) Servant Leadership, (f) Team Leadership, (g) Gender Leadership, (h) Social Equality, and (i) Transactional Leadership
    • …
    corecore