526 research outputs found

    Explainable shared control in assistive robotics

    Get PDF
    Shared control plays a pivotal role in designing assistive robots to complement human capabilities during everyday tasks. However, traditional shared control relies on users forming an accurate mental model of expected robot behaviour. Without this accurate mental image, users may encounter confusion or frustration whenever their actions do not elicit the intended system response, forming a misalignment between the respective internal models of the robot and human. The Explainable Shared Control paradigm introduced in this thesis attempts to resolve such model misalignment by jointly considering assistance and transparency. There are two perspectives of transparency to Explainable Shared Control: the human's and the robot's. Augmented reality is presented as an integral component that addresses the human viewpoint by visually unveiling the robot's internal mechanisms. Whilst the robot perspective requires an awareness of human "intent", and so a clustering framework composed of a deep generative model is developed for human intention inference. Both transparency constructs are implemented atop a real assistive robotic wheelchair and tested with human users. An augmented reality headset is incorporated into the robotic wheelchair and different interface options are evaluated across two user studies to explore their influence on mental model accuracy. Experimental results indicate that this setup facilitates transparent assistance by improving recovery times from adverse events associated with model misalignment. As for human intention inference, the clustering framework is applied to a dataset collected from users operating the robotic wheelchair. Findings from this experiment demonstrate that the learnt clusters are interpretable and meaningful representations of human intent. This thesis serves as a first step in the interdisciplinary area of Explainable Shared Control. The contributions to shared control, augmented reality and representation learning contained within this thesis are likely to help future research advance the proposed paradigm, and thus bolster the prevalence of assistive robots.Open Acces

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Autonomous robot systems and competitions: proceedings of the 12th International Conference

    Get PDF
    This is the 2012’s edition of the scientific meeting of the Portuguese Robotics Open (ROBOTICA’ 2012). It aims to disseminate scientific contributions and to promote discussion of theories, methods and experiences in areas of relevance to Autonomous Robotics and Robotic Competitions. All accepted contributions are included in this proceedings book. The conference program has also included an invited talk by Dr.ir. Raymond H. Cuijpers, from the Department of Human Technology Interaction of Eindhoven University of Technology, Netherlands.The conference is kindly sponsored by the IEEE Portugal Section / IEEE RAS ChapterSPR-Sociedade Portuguesa de Robótic

    Design Principles for FES Concept Development

    Get PDF
    © Cranfield University 2013. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.A variety of pathologies can cause injury to the spinal cord and hinder movement. A range of equipment is available to help spinal injury sufferers move their affected limbs. One method of rehabilitation is functional electrical stimulation (FES). FES is a technique where small electrical currents are applied to the surface of the user’s legs to stimulate the muscles. Studies have demonstrated the benefits of using this method and it has also been incorporated into a number of devices. The aim of the project was to produce a number of designs for a new device that uses FES technology. The project was completed in conjunction with an industrial partner. A review of the literature and consultation with industrial experts suggested a number of ways current devices could be improved. These included encouraging the user to lean forwards while walking and powering the device using a more ergonomic method. A group of designers were used to produce designs that allowed the user to walk with a more natural gait and avoided cumbersome power packs. The most effective of these designs were combined to form one design that solved both problems. A 3-dimensional model of this design was simulated using computer-aided design software. Groups of engineers, scientists and consumers were also invited to provide input on how a new device should function. Each of these groups provided a design that reflected their specific needs, depending on their experience with similar technology. Low level prototypes were produced of these designs. A group of designers were also used to design concepts for a functional electrical stimulation device based on an introduction given by industry experts. Each of the designs was presented to experienced professionals to obtain feedback. A set of guidelines were also produced during the project that instructed how to create the designs

    A Collaborative Wheelchair System

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Assistive technology: autonomous wheelchair in obstacle - ridden environment

    Get PDF
    The benefits for the advancement and enhancement of assistive technology are manifold. However, improving accessibility for persons with disabilities (PWD) to ensure their social and economic inclusion makes up one of the major ones in recent times. This paper presents a set of new nonlinear time-invariant stabilizing controllers for safe navigation of an autonomous nonholonomic rear-wheel drive wheelchair. Autonomous wheelchairs belong to the category of assistive technology, which is most sought in current times due to its usefulness, especially to the less abled (physically and/or cognitively), hence helping create an inclusive society. The wheelchair navigates in an obstacle-ridden environment from its start to final configuration, maintaining a robust obstacle avoidance scheme and observing system restrictions and dynamics. The velocity-based controllers are extracted from a Lyapunov function, the total potentials designed using the Lyapunov based Control Scheme (LbCS) falling under the classical approach of the artificial potential field method. The interplay of the three central pillars of LbCS, which are safety, shortness, and smoothest course for motion planning, results in cost and time effectiveness and the velocity controllers’ efficiency. Using the Direct Method of Lyapunov, the stability of the wheelchair system has been proved. Finally, computer simulations illustrate the effectiveness of the set of new controllers

    Semi-autonomous robotic wheelchair controlled with low throughput human- machine interfaces

    Get PDF
    For a wide range of people with limited upper- and lower-body mobility, interaction with robots remains a challenging problem. Due to various health conditions, they are often unable to use standard joystick interface, most of wheelchairs are equipped with. To accommodate this audience, a number of alternative human-machine interfaces have been designed, such as single switch, sip-and-puff, brain-computer interfaces. They are known as low throughput interfaces referring to the amount of information that an operator can pass into the machine. Using them to control a wheelchair poses a number of challenges. This thesis makes several contributions towards the design of robotic wheelchairs controlled via low throughput human-machine interfaces: (1) To improve wheelchair motion control, an adaptive controller with online parameter estimation is developed for a differentially driven wheelchair. (2) Steering control scheme is designed that provides a unified framework integrating different types of low throughput human-machine interfaces with an obstacle avoidance mechanism. (3) A novel approach to the design of control systems with low throughput human-machine interfaces has been proposed. Based on the approach, position control scheme for a holonomic robot that aims to probabilistically minimize time to destination is developed and tested in simulation. The scheme is adopted for a real differentially driven wheelchair. In contrast to other methods, the proposed scheme allows to use prior information about the user habits, but does not restrict navigation to a set of pre-defined points, and parallelizes the inference and motion reducing the navigation time. (4) To enable the real time operation of the position control, a high-performance algorithm for single-source any-angle path planning on a grid has been developed. By abandoning the graph model and introducing discrete geometric primitives to represent the propagating wave front, we were able to design a planning algorithm that uses only integer addition and bit shifting. Experiments revealed a significant performance advantage. Several modifications, including optimal and multithreaded implementations, are also presented
    corecore